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Department of Computer Engineering

Istanbul Technical University
Maslak, Istanbul TR34469

TURKEY
{gunduz,etaner}@cs.itu.edu.tr

Abstract: - Clustering of data items is one of the important applications of graph partitioningusing a graph
model. The pairwise similarities between all data items form the adjacency matrix of aweighted graph that
contains all the necessary information for clustering. In this paper we propose a novel hybrid-evolutionary al-
gorithm based on graph partitioning approach for data clustering. The algorithm is currently tested on synthetic
datasets to allow controlled experiments and the results show that our method can effectively cluster data items.
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1 Introduction

The rapid development of computer technology in the
last decades has made it possible for data systems to
collect huge amounts of data. Analyzing such large
datasets is tedious and costly, and thus, we need effi-
cient methods to be able to understand how the data
was generated, and what sort of patterns and regulari-
ties there exist in the data. A research area in computer
science that considers these kinds of questions is called
data mining. One of the topics that has been exten-
sively studied in data mining is clustering. Clustering
is a discovery process that groups a set of items having
similar characteristics. Clustering methods allow users
to summarize and organize the huge amounts of data
in order to help them in finding what they are looking
for.

In this paper, we propose a new graph based clustering
method using the criterion function, called min-max
cut [3]. The motivation behind this criterion function
is that the sequence clustering process can be viewed
as partitioning the sequences into subgraphs by mini-
mizing the similarities among subgraphs and maximiz-
ing the similarities within each subgraph. The opti-
mal solution to this problem is NP-hard [1], because
of the combinatoric nature of the problem. For this
reason, evolutionary algorithms (EA) is a good solu-
tion approach to optimize this function. To optimize
artificial systems, EAs [4, 12] model the evolution-

ary process and the principles of Mendelian genetics
found in nature. They are considered to be among the
most powerful heuristic search and optimization meth-
ods and are commonly used to attack NP-hard prob-
lems. They start with a random set of solution candi-
dates and at each iteration try to improve their quality.
Even though normally they are able to deal with large
search spaces and are able to produce solutions of ac-
ceptable quality in a short time, recently it has become
a common practice to hybridize them with other ex-
isting approaches to even improve their performance.
In this paper, we hybridize a simple EA with an esti-
mation distribution algorithm (EDA) [7] to fasten its
first hitting time. Work on EDAs has increased re-
cently and very successful applications can be found
in literature. However one of their shortcomings is
their tendency to get stuck at local optima. To over-
come this, diversity maintaining techniques should be
introduced. The hybridization between the EA and the
EDA in this paper, aims at combining the powerful fea-
tures of both approaches. Within our awareness, exist-
ing tools for graph partitioning or clustering based on
hybrid EAs are hard to find. Therefore, we concen-
trate in this study on a clustering method based on a
hybrid EA that effectively identifies clusters by opti-
mizing the min-max cut function. This approach to
graph partitioning is novel and unique. One of the key
characteristics of the evolutionary based approach is
the criterion function. Our method is easy to adapt to



any criterion function and does not require any single
cutoff value. We experimentally evaluated our method
using a synthetic data set to be able to really understand
how it functions and to be able to perform controlled
experiments. We generated our graphs to be highly ir-
regular or random, and to have nodes of dramatically
varying degrees. The preliminary experimental results
show that using an EA hybrid for graph partitioning
improved the quality of the clusters. Equally impor-
tant, these results are robust across graphs with dif-
ferent structures. However this is a work in progress
and there seem to be quite a few improvements to be
made to the approach to even obtain better results in
a shorter time. The current promising results promote
further study.

The rest of the paper is organized as follows. Section
2 describes graph based clustering and optimization
methods. Section 3 presents our proposed approach
for graph partitioning. Section 4 provides detailed ex-
perimental results. In Section 5, we examine related
work. Finally, in Section 6 we conclude and discuss
future work.

2 Graph Based Clustering

In this study, we focus on pairwise data clustering. For-
mally, the pairwise data clustering problem is defined
as follows: GivenS = (V, N, W, C), whereV is a
set of data items represented as vertices in a graphG,
N ⊆ V ×V is a set of data pairs,W is a symmetric ma-
trix of similarity values of each data pair inN , andC
is the clustering criteria function, partition the data set
V into clusters such that the criteria inC is optimized.
Let P = {P1, ..., Pk} be k clusters on the graphG.
In this study the clustering problem is formulated as
partitioning the graphG into k disjoint subgraphs by
minimizing min-max cut function [3]. Min-max cut
function combines both the maximization of similarity
within each subgraph and minimization of similarity
among subgraphs, and is defined as:

minimize
k∑

m=1

c(Gm, G \ Gm)
∑

vi,vj∈Gm W (vi, vj)
(1)

wherec(Gm, G \ Gm)is the sum of edges connect-
ing the vertices inGm to the rest of the vertices in
graphG \ Gm andW (vi, vj) is the weight of the edge
connecting verticesvi and vj . We often identify a
clusterPi with the induced subgraphGi = (Vi, Ei),

whereVi is the set of vertices in subgraphGi such that⋃k
i=1

Vi = V andEi = {{u, v} ∈ E ∧ u, v ∈ Vi}.
Then the setEin =

⋃k
i=1

Ei is the set ofintra cluster
edges andEout = E \ Ein is the set ofinter cluster
edges.

3 Finding Clusters

The clustering method used in this paper consists of
four stages. The general algorithmic flow of the ap-
proach can be seen in Figure 1.

1:   decrease search space;
2:   randomly initialize EA;
3:   repeat
4:     generate population;
5:     select pairs for reproduction;
6:     recombine pairs;
7:     mutate individuals with pm1;
8:     evaluate new individuals;
9:     estimate probabilities of alleles;
10:  until criteria_met;
11:  restore search space;
12:  initialize EA with seeds from previous stage;
13:  repeat
14:    generate population;
15:    select pairs for reproduction;
16:    recombine pairs;
17:    mutate individuals with pm2;
18:    evaluate new individuals;
19:    estimate probabilities of alleles;
20:  until stopping_criteria_met;
   

Figure 1: Algorithmic flow for hybrid-EA

In the first stage, the search space is reduced by heuris-
tically combining nodes which have higher similari-
ties. The motivation behind this pre-processing step is
that nodes that have higher similarities are more likely
to end up in the same cluster. By reducing the search
space, the running time of the hybrid-EA is reduced
as will be seen in the next section. To achieve this re-
duction, the similarity data are scanned to heuristically
combine the nodes. In the second stage, the hybrid-EA
is randomly initialized and run on the reduced search
space for a predefined number of generations. In the
third stage, the combined nodes are separated to re-
store the search space to its original size. In the final
stage, the hybrid-EA is reinitialized using the best so-
lution obtained from the second stage to seed a prede-
fined percentage of the population. These stages will
be further explained in the following subsections.

3.1 Search Space Reduction

As expected, an EA based approach performs faster in
smaller search spaces. So we pre-processed the sim-
ilarity matrix and heuristically combined nodes to re-
duce the running time of the whole algorithm. For ex-



ample if the original graph consists of 4000 nodes, by
combining them in groups of four will reduce it to 1000
nodes. Assume that a sub-part of a similarity matrix
shows that the similarity values between n1 and five
other nodes are as follows:

n1 n2 n3 n4 n5 n6 ...
n1 - 0.6 0.1 0.5 0.7 0.4 ...

Based on these similarity values, n1, n2, n4 and n6 will
be combined to be labelled as the new n1.

3.2 Search Space Restoration

Before the third stage of the approach, the search space
is restored to its original size. The combined nodes
are separated and the cluster number of the combined
node is assigned to all of them. For example assume
that as in the example in the above section n1, n2, n4
and n6 have been combined and labelled as the new
n1 and the first application of the hybrid-EA assigned
this new n1 to cluster 3. In the restoration stage, the
four nodes are separated and each node is assigned to
cluster number 3. This heuristic method assumes that
similar nodes will be placed in the same cluster, but it
aims at maximizing the similarity values within a clus-
ter. However it disregards the second objective of min-
imizing the cut between clusters. The reason this ap-
proach works is that the clustering solution found by
the hybrid-EA applied to the reduced search space is
only used to seed a percentage of the population in the
third stage. Because of this, the hybrid-EA still has the
necessary diversity to refine this solution.

3.3 The Hybrid EA Approach

A simple EA approach is hybridized with an EDA [7]
like approach. One of the preliminary and simple EDA
approaches in literature is the population based incre-
mental learning (PBIL) introduced in [8] and [9]. The
original PBIL works by estimating the probability dis-
tribution of good alleles in the population and initializ-
ing the population at each generation using these distri-
butions. It is originally proposed for binary represen-
tations. It incorporates no selection or mutation mech-
anisms. One of the drawbacks of this approach, espe-
cially in multimodal fitness landscapes, is that it has
a tendency to get stuck at local optima. A diversity
maintaining technique is required to overcome this de-
ficiency. In this paper, we introduce mutation and se-
lection into a PBIL like approach and thus hybridize it
with EA like mechanisms.

Each solution candidate in the search space is repre-
sented as a haploid individual which means that each
individual only has one chromosome. Each gene lo-
cation on the chromosome represents a node in the
graph. The genes can take on integer values showing
into which cluster the corresponding node is placed.
For example, for a graph with 5 nodes, the following
individual depicts a solution that places the first and
the third nodes in the first cluster, the second node in
the second cluster and the fourth and the fifth nodes in
the third cluster.

individual: 1 2 1 3 3

The fitness of the individual shows how good a solu-
tion it is. The objective function given in Equation
1 is for minimization. However for the PBIL part of
the hybrid approach we need to transform it into max-
imization. Assume that the original objective function
in Equation 1 is named asobj, the fitness function we
used for the maximization is given in the below equa-
tion as follows:

fitness = 1/(1 + obj) (2)

There is a global probability matrix that shows the
probability of each genegi to be initialized to each al-
leleaj at the beginning of each generation. For exam-
ple assume for a chromosome length of five and three
alleles, the current probability matrix is as follows:

g1 g2 g3 g4 g5

a1 0.4 0.0 06 0.3 0.8
a2 0.2 0.0 0.1 0.3 0.0
a3 0.4 1.0 0.3 0.4 0.2

Using this matrix, at the beginning of the current gen-
erationg3 for example will be initialized toa1 with
probability 0.6, toa2 with probability 0.1 and toa3

with probability 0.3.

The global probability matrix is calculated at the end
of each generation using a percentage of the best off-
spring individuals. For example for alleleaj and gene
location i, the probability valueprobji will be calcu-
lated as given in equation 3:

probji =

∑n
m=1

fm∑n
k=1

fk

for all chromosomemi = aj

(3)

where n is the total number of chromosomes in
the population that are used in the calculation of
the probability values,f is the fitness value of
each chromosome,i = 1, ..., chromosome_length,



j = 1, ..., allele_count. Based on this, theprobji

value will be higher if individuals with the alleleaj

in the ith location have higher fitnesses compared to
those that have other alleles at that location.

As can be seen in Figure 1, after the population is
initialized at the start of each generation, the rest
of the loop runs like a regular EA. For the selec-
tion of parents, a tournament selection with tourna-
ment sizes equal to1/5 of the population size is
used. Uniform cross-over with a predefined probabil-
ity is applied to selected parents and a uniform mu-
tation is applied to each gene with probability equal
to 1/chromosome_length. The offspring replace the
parents and the new probability matrix values are cal-
culated using this offspring population. The main loop
of the algorithm is run for a predetermined number of
generations.

The same hybrid-EA approach is used for both stage
2 and stage 4. The only difference is that for stage 2,
the population is fully randomly initialized. However
for stage 3, 10% of the population is initialized to the
clustering solution produced as a result of stage 2.

4 Experimental Results

We conduct our experiments on synthetic data aimed at
evaluation the ability of finding clusters of good qual-
ity. For evaluating the quality of a clustering solution,
two different well known metrics are used, namely en-
tropy and purity [11]. The quality of clustering solu-
tion is measured by using two metrics that look at class
labels of data items assigned to each cluster. The first
metric, entropy, measures how the various classes of
data items distributed within each cluster. Given a par-
ticular clusterPm, the entropy of this cluster is defined
to be [11]:

E(Pm) = −
1

log k

k∑

i=1

ni
m

nm

log
ni

m

nm

(4)

wherek is the number of classes in the data set,nm

is the number of data items assigned to themth clus-
ter, andni

m is the number of data items of theith class
that were assigned to themth cluster. The entropy of
the entire clustering solution is then defined as the sum
of the individual entropies of each cluster weighted by

the number of data items assigned to the cluster:

Entropy =
k∑

m=1

nm

n
E(Pm) (5)

A low entropy value means, that the data items are
clustered effectively. High entropy value, on the other
hand, indicates wide divergence in class labels among
data items in a cluster.

The second metric, purity, measures the extend to
which each cluster contains data items from primar-
ily one class. The purity of a clusterPm is defined as
the fraction of the number of data items of the clus-
ter to the largest number of data items assigned to that
cluster [11]:

Pr(Pm) =
1

nm

maxi(n
i
m) (6)

A high purity value means that the data items in one
cluster have mostly one of the class labels. The overall
purity of the clustering solution defined to be:

Purity =
k∑

m=1

nm

n
Pr(Pm) (7)

In general, larger values of purity means that the clus-
tering solution is better.

We implement a graph generator to construct a graph
with a given number of partitions. Given the number
of the vertexesn and the number of partitionsk, each
vertex is assigned to one of the partitions. Next, a uni-
formly random clustered graph is generated by insert-
ing intra cluster edges with probabilitypin and inter
cluster edges with probabilitypout. In case a graph
constructed that way is not connected, additional edges
are added to connect the components. We can assume
that for a graph generated that way the initial clustering
has the expected behavior with respect to the values of
pin andpout. Thus, we have a prior knowledge about
the class labels of each vertex which provides to use
entropy and purity metrics to evaluate our clustering
approach.

For our experiments, we set the number of vertexes
n = 4000, the number of partitionsk = 10, pin = 0.7
andpout = 0.3. For this graph (G0 = (V0, E0)), we
run the experiments in two levels. Instead of trying to
compute partitioning directly in the original graph, we

1Our clustering algorithm is programmed in C language without any code optimization. Further experiments on computation time
will be conducted in future.



first obtain a sequence of graphs whose size is smaller
than the size of the original graph. The size of the orig-
inal graph is decreased by merging vertices as men-
tioned in Section 3. The motivation behind this pro-
cess is to shorten runtime for the clustering programs1.
In case of clustering a smaller graph of 1000 nodes
(G1 = (V1, E1)) one fitness calculation is 2000 times
faster then the program which clusters a graph of 4000
nodes. Due to lack of space, we just present the results
of the experiments which are performed in two levels.

For the experiments performed in the tests, the follow-
ing parameter settings for the hybrid-EA were used:
population size is 50, probability of cross-over is 0.8,
tournament selection size is 10, number of individu-
als used in global probability matrix calculation is 10,
chromosome length is equal to the number of nodes,
the probability of mutation is1/chromosome_length
and the maximum number of generations is set to 3000
and 7500 for the 1000 nodes and 4000 nodes instances
respectively.

The results of those experiments are presented in Ta-
ble 1. The experiments are performed 20 times and
the entropy and purity values are calculated for each
clustering solution. Furthermore, the number of gener-
ations are considered for each clustering solution. The
results in Table 1 show the average value of fitness, en-
tropy, purity and number of generations as Avg. Fit.,
Avg. Ent., Avg. Pur. and Avg. Gen. respectively. In
addition to those results the standard deviation of fit-
ness value and number of generations are calculated.
The average of entropy and purity values are only cal-
culated for the final clustering solutions. The fitness
value of the generated graph should be0.338. As can
be seen from the Table, the average value of fitness is
0.22, which confirms that our clustering solutions are
quite effective. Furthermore, the results show that the
clustering solutions have very low entropy values and
high purity values as desired.

Table 1: Results for the clustering solution obtained
via two level partitioning

Avg. Std. Avg. Std. Avg. Avg.
Fit. Fit. Gen. Gen. Ent. Pur.

G1 - - 4593.6 1281.1 - -
G0 0.220 0.096 4698.6 2102.6 0.065 0.957

Over the entire set of experiments, the smallest entropy
value is 0.022. In this case the fitness value is0.306.
Figure 2 shows the confusion matrix for the experi-

ment that has the best solution for entropy and purity.
The confusion matrix can be used for determining the
misclassification. For example the first cluster has 452
items and 447 of those are from the same class (i.e.
only 5 items are misclassified). As can be seen from
the Figure, all of the clusters contain items that mostly
belong to the same class.

0 0 0 1 1 0 2 447 1 0
0 1 0 0 0 1 0 3 0 410
1 398 0 0 0 0 0 0 0 0
0 0 0 0 0 388 0 3 0 0
1 0 0 0 0 0 388 0 1 0
0 0 0 0 1 1 0 0 388 1
0 0 375 0 0 0 0 0 0 0

408 0 1 0 0 2 1 0 1 0
0 0 0 362 0 0 0 2 0 0
0 0 1 1 403 0 3 0 1 1

Figure 2: Confusion Matrix

The results confirm that our clustering method can ef-
fectively cluster data items. Besides this, reducing the
search space decreases the running time of the cluster-
ing algorithm.

5 Related Work

An important form of data considered in data mining
is sequential data. This kind of data occurs in many
applications domains, such as biostatistics, medicine,
telecommunication, user interface studies, market bas-
ket data, and World Wide Web page request monitor-
ing. However, most research on clustering algorithms
focus on non-sequential domain. All these algorithms
assume that the data set is in metric space. How-
ever, the structure of sequences makes it difficult to
use metric space. Each sequence is composed of non-
numerical symbols, and the length of a sequence can
run up thousand or even beyond. Many sequence clus-
tering algorithms precompute all pairwise sequence
similarities. In this case, the sequence data can be rep-
resented by an undirected graphG whose vertices are
sequences in the data set. An edge connecting two ver-
tices in the graph has a weight equal to the similarity
between these two sequences. Properties of a graph
can then be used to cluster sequences by constructing
a set of subgraphs fromG. Thus, sequence clustering
problem becomes graph partitioning problem.

Most sequence clustering algorithms refine cluster-
ing recursively. However, one of the most challeng-
ing problems in sequence clustering methods that use
graph partitioning approaches is to put a single cutoff
score that separates all sequence clusters. At any given



point a set of sequence clusters or subgraphs such as
{G1, G2, ..} are given. The problem in such methods
is, should a cluster, for example, say,G2 be split fur-
ther or not. Different cutoff values may result in differ-
ent clustering solutions. Many clustering algorithms
use graph properties to handle this problem. The clus-
tering algorithms in [5, 10] are based on a purely graph
theoretic approach. However, there remains another
important issue. In the simplest MIN cut algorithm,
a connected graph is partitioned into two subgraphs
with the cut size minimized. This leads to a skewed
cut, where a subgraph could be very small comparing
to the other subgraphs. Various constraints are intro-
duced, such as ratio cut [2], normalized cut [6], and
min-max cut [3], etc. to remedy this problem.

6 Conclusion and Future Work

We have considered the problem of clustering data
items by using a graph model. We introduce a novel
hybrid-evolutionary algorithm based on graph parti-
tioning approach for data clustering. Results show
that hybrid-EA gives good clustering. Our proposed
method provides good preliminary results to promote
our further study. Instead of trying to compute par-
titioning directly in the original graph, we reduce the
search space by merging the nodes in the graph. Thus,
the running time of the clustering algorithm is reduced
dramatically. However, the program runtime is still
long, which would be shorten in the future by program-
ming optimization.

We are now extending the clustering method in sev-
eral ways. Experimentally, we have demonstrated the
success of hybrid EA by clustering data items. We are
planning now to experiment the method with other hy-
brids. The proposed method, however, is general and
can be applied in a variety of graph partitioning prob-
lems. We will try our method on real world data ob-
tained from user accesses on a Web site in order to
embed it in a Web page recommendation model. All
this will be the subject of future work.
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