
An Event-Driven Test Framework for Evolutionary 
Algorithms in Dynamic Environments 

A. Sima Etaner-Uyar 
Computer Engineering Department 

Istanbul Technical University 
Maslak TR 34469 Istanbul ~ Turkey 

Email: etaner@cs.itu.edu.tr 

Abstract-There is a growing interest in applying evolutionary 
algorithms to dynamic environments. This can be seen by the 
increase in the number of papers addressing various issues 
concerning different types of changing environments. Most of 
these studies use their own test functions and implementations 
which makes it harder to repeat the reported experiments. This 
paper focnses on the types of benchmark functions found in 
literature that are used for testing evolutionary algorithms in 
dynamic environments and proposes an easy-to-use test bame- 
work. The proposed test framework consists of an event driven 
environment control mechanism component as well as a scenario 
creator component which allows the user to experiment with 
different instances of a problem, incorporating various properties 
and types of change. The components of the framework interact 
with each other through a well defined function call interface. By 
way of these features, the test framework realizes its design goals 
which are ease of use, compatibility, controllability, flexibility and 
generalizability. The test framework is still in its early stages of 
development. Extensions and modifications will be made based 
on the requirements and feedback received from its users. 

I. INTRODUCTION 

There is a growing interest in applying evolutionary algo- 
rithms to dynamic environments. This can be seen by the 
increase in the number of papers addressing different issues 
concerning different types of changing environments. Most 
of these studies report results based on simple test functions 
devised specifically for that study. These results are commonly 
given to show the algorithms’ ability and speed to adapt to 
the change without much concern for the type and dynamics 
of the change in the system. These issues make it hard to 
repeat the tests and experiments performed in these studies 
and thus prevent healthy comparisons with other approaches 
in future studies. Another problem is that since very simple 
test problems are designed for testing some specific properties 
of an approach, it is hard to make generalizations to real world 
problems. 

Designing and using standard, tunable test problem gener- 
ators has recently become an area of interest within the evo- 
lutionary computing community. In Genetic and Evolutionary 
Computation Conference held in 2003 (GECCO 2003). one of 
the main discussion topics of the “Evolutionary Algorithms for 
Dynamic Optimization Problems Workshop (evoDOP-2003)” 
[171 was the design and use of suitable benchmark problems 
for different types of changing environments. It can be seen 

0-7803-85 15-2/04/$20.00 02004 IEEE 

H. Turgut Uyar 
Computer Engineering Department 

Istanbul Technical University 
Maslak TR 34469 Istanbul - Turkey 

Email: uyar@cs.itu.edu.tr 

from the discussions that emerged as a result of the workshop 
that the EA community is lacking in appropriate and easy to 
use benchmark test problems for different dynamic problem 
classes. 

The main aim of this study is to determine the type of 
benchmark functions for changing environments as used by 
different researchers and propose a new test framework for 
testing different evolutionary approaches. The proposed test 
framework provides the basic features expected from such a 
system, is easy to use and can be applied to various discretely 
changing problems using different representations. It will also 
be possible to make more accurate comparisons between 
EA approaches by using the benchmark functions repository 
included in the framework. 

The rest of the paper is organized as follows: Section 2 
groups different types of problems usually encountered in dy- 
namic optimization studies and categorizes them based on their 
specific requirements. Section 3 lists the properties expected 
from a good benchmark function and provides a survey on 
previously suggested benchmark functions and test problem 
generators. Section 4 explains the proposed test framework 
and discusses it in-detail. Section 5 demonstrates how the 
framework can be used. Section 6 discusses the properties of 
the framework, showing how it realizes the desired properties 
of a good test framework for dynamic environments. Section 7 
concludes the paper and provides directions for future releases. 

11. TYPES OF DYNAMIC ENVIRONMENTS 
Different types of dynamic environments have different re- 

quirements. These environments can be categorized in several 
ways. However, for the purposes of designing benchmark 
functions and test problem generators, classification can be 
done based on the type of change required. Two main groups 
can be used for this purpose: 

The first group contains. the ‘continuous environments 
which usually use floating point representations. 
The second group is composed of discrete problems 
which may also be termed as combinatorial optimization 
problems. In evoDOP-2003 workshop 1171, suggestions 
were made to further divide this group into three sub- 
groups as allocation problems, routing problems and 
sequencing problems. 

2265 



Common to all groups, change in the environment can be 
categorized based on the following criteria as given in [5]: . frequency of change 

severity of change . ' 

predictability of change 
cycle length I accuracy 

When designing test problems and benchmark functions, the 
above groups and categorization criteria need to be taken into 
consideration. 

. .  

111. TEST PROBLEM GENERATORS A N D  BENCHMARK 
FUNCTIONS 

Several benchmark functions and test problems have been 
used in literature for exploring dynamic environments and for 
comphing different evolutionary algorithm (EA) approaches. 
Most studies commonly use one of the following test problems 
for comparisons: . For discrete environments, two of the most commonly 

used benchmark functions in literature are the dynamic 
bit matching problem (e.g. used in [6]) and the dynamic 
knapsack problem (e.g. used in [71, [IO], [ I l l ,  [12]). 
For continuous environments, some of the most com- 
monly used benchmark problems are the moving parabola 
problem (e.g. used in [I]), the moving peaks benchmark 
function [3l (e.g. used in [4]) and DFI [SI (e.g. used in 

A detailed survey of test problems and benchmark functions 
used in literature can be found in [2] and [5]. 

In most studies that use specific test functions, one major 
concern is the fact that their implementations are also specific 
to the EA approach they are used in conjunction with. This 
increases the problem of not being able to accurately repeat 
reported experiments in future studies for comparison pur- 
poses. Based on these observations, tunable test problem and 
fitness landscape generators have been proposed by Branke 
[3l, Momson [SI and Smith [13], addressing several test 
problem generation issues. The properties expected from a 
good test problem generator have been studied in [2], [3], 
[SI, [131. Based on these studies and current experience of the 
authors, these properties can be listed as follows: . allow controlled changes, i.e. the optimal value at each 

change instance should be known and the environment 
should be tunable using parameters . allow different types of changes 

[W. 

- changes of different severity levels 
- periodic changes 
- oscillating changes 
- random changes (based on a chosen distribution) 

allow extensions to real-world problems . be easy to implement and to use . be platform-independent 
be elficient 

In the following sections, the proposed test framework will be 
evaluated based on these desirable properties. 

Scenario 

Iv. THE PROPOSED DYNAMIC ENVIRONMENT TEST 
FRAMEWORK 

The proposed test framework is designed to generate d.is- 
Crete dynamic problem instances, so it will henceforth be 
called DEFEAT (Dynamic Environment Framework for Eio- 
lutionary Algorithm Testing).' DEFEAT is actually more than 
just a test problem instance generator. It works according to an 
event-based environment control approach where each change 
instance is regarded as an event in the system and different 
event scenarios can be created. 

The main considerations in the design of DEFEAT are 
ease of use, compatibility, controllability, flexibility and gen- 
eralizability. To implement these considerations, DEFEAT is 
organized as a set of components which interact with each 
other through a well defined function call interface. 

DEFEAT can be used at two basic user levels. At the lirst 
level, the user only implements an EA and tests this EA 
using one of the test problems contained in the DEFEAT 
benchmark functions repository through function calls to the 
system. At the second level, the user can also implement new 
test problems as well as an EA and test this EA on the new 
problem using the DEFEAT environment control mechanism 
to change the environment. ' 

The basic components of DEFEAT are given in Fig. 1 and 
can be listed as follows: 

a tool to change the environment according to a pre- 
defined scenario . a problem specific component in which the environment 
is defined through objectives, constraints and problem 
specific data (may also be implemented by user) 
a scenario creator to generate different change scenarios 

Problem 
Specific 
0ata 

1 

function call . 
-EA 

reply 

I scenario Creator Component I 
I 

lunction Cali 
Event-Based 
Environment - Problem 
controi1er Component 

reply 

user 

'The sourcc codes wnnen in C are available for download as P zipped fr le 
from http:l/www.cs.itu.edu.h.TetanerlDEFEATzip 

2266 

http:l/www.cs.itu.edu.h.TetanerlDEFEATzip


The main motivation behind this level of abstraction is to 
provide a test framework as flexible as possible. Through the 
separation of the environment controller component and the 
problem specific component, it is possible to use the system 
with different problems. In the following subsections, the 
different components will be explained in detail, focusing on 
how they implement the desirable features of a test problem 
generator. 

A. Main Components of DEFEAT 

the following sections, can be seen in Fig. 2 
The interaction between DEFEAT'S components, detailed in 

user-EA 

initialire rest B y s t e m  

while nor-finished do 

r 

I 

\ I  I ::: 

l l  ' 
I I Environment Controller Comwnent Problem ComDonenl 

Fig. 2. Outline of the system 

I )  The Scenario Creator Component: The environment 
controller component works as an event based system, so 
the change instances are defined as events in a scenario. The 
scenario creator component is used to generate these scenarios. 
A typical scenario consists of the following information: 

base time unit for the framework clock (i.e. number of 

total number of events 
a list of event times and the corresponding optimal 

It is possible to create scenarios defining only the event times 
and not providing any actual optimal solutions. This feature 
allows the extension of a test problem to a real world situation 
where the optimal solutions may not be known in advance. 

The scenario is created by the scenario creator component 
through interactions with the user. Based on the user supplied 
preferences, the following types of change can be created 
either manually by the user or automatically by the scenario 
creator (assuming the optimum values for each change instance 
will also be included in the scenario): 

fitness evaluations or generations) 

solutions (if known) for these instances 

. changes with low, moderate and/or high severity 

. solutions oscillating between two values with fixed time 
intervals . solutions oscillating between n predefined values with 
fixed time intervals . periodic changes (constant time intervals) and random 
new solutions . random time intervals and random new solutions 
- events occurring based on a uniformly distributed 

random time interval 
- events occurring according to a Poisson process, 

i.e. with exponentially distributed interarrival times 
between events 

If no optimal solutions will be included in the scenario, the 
scenario creator only creates event times based on user pref- 
erences. The generated scenario is used by the environment 
controller component. 

2)  The Environment Controller Component: An event- 
based approach is used in this component where each discrete 
change instance is treated as an event. Events occur following 
a predefined scenario providing the times of scheduled change 
instances. The scenario is created using a scenario creator tool 
providing the required flexibility to implement many different 
types of change as explained in the previous subsection. A 
framework clock keeps track of the time units that have passed 
in the EA so far. Changes can be implemented based on the 
number of fitness evaluations or the number of generations by 
setting the base time unit for the clock in the event creation 
system accordingly. The environment controller component 
currently provides three services for use in the EA: . initialize the test system: The whole test system is ini- 

tialized at this call. The current scenario is read in from 
a file and the required event-based system setup is made. 
At the end of this call, the user-EA receives the necessary 
information to set the chromosome length, the allele value 
range and the allele data type (i.e. integer or real) 
evaluate the solution: The user-EA sends an individual 
to the environment controller component which in turn 
passes it on to the problem specific component. The 
fitness calculated by the problem specific component is 
returned to the user-EA via the environment controller 
component. At each evaluation, the environment con- 
troller checks the scenario to see if there is a scheduled 
event for that time unit. If an event should occur, i.e. 
it  is time for an environment change, the environment 
controller component makes the necessary changes in 
conjunction with the problem specific component to 
emulate the new environment. The user-EA is notified 
as to whether a change occurred or not and is given 
the information regarding the current chromosome length 
and the allele range in case they are affected by the 
change. The environment controller notifies the user-EA 
of a change in order to be compatible with many different 
types of EA implementations since some of them may 
need to detect the change or be notified of the change. 
terminate the test system 

2267 



3J The Problem Implementation Component: This com- 
ponent is where the actual problem specific functions are 
implemented. The information needed to set the chromosome 
length and allele range in the user-EA are acquired from a 
problem definition resource by this component. The fitness 
evaluation method is also defined here. 

If the optimal solutions are not given in the scenario file, the 
problem implementation component has to keep track of the 
state of the system and incorporate the necessary mechanisms 
and settings to change the environment when instructed to do 
so by the environment controller component. 

Depending on the level of the user, either pre-implemented 
problem definitions can be used or new problems can be easily 
defined. The only restriction in defining a new problem is to 
conform to the function call interface of the test, framework. 
This component communicates only with the environment 
controller component through the following calls: . initialize the problem: When the environment controller 

component wishes to initialize the problem, the problem 
specific data are input to the problem specific component 
and the environment controller component is notified 
of the current settings for the problem instance which 
determine the actual chromosome length, allele value 
range and allele representation type for the user-EA. 
calculate fitness: When the environment controller wishes 
to have an individual evaluated, it sends the individual 
and, if available for the problem, the actual optimal 
solution for the current environment to the problem 
component which in turn evaluates the individual and 
returns its fitness. . terminate the problem 

4 )  The User-EA: The user-EA is not a part of the frame- 
work. It is where the actual evolutionary algorithm is imple- 
mented. The user-EA interacts with the environment controller 
component using the services defined in section IV-A.2. Due to 
the abstraction provided by the service call interface between 
the user-EA and the environment controller, the user can 
experiment wi.th different types of EA implementations. The 
user-EA needs to learn the gene representation type which 
shows the encoding for the genes as real or integer, the 
chromosome length and the allele range from the environment 
controller component. The outline of an example user-EA 
implementation that uses the service calls is given in Fig. 3. 
In this example outline, it is assumed that on detection of a 
change, the user-EA makes the necessary adjustments (e.g. in- 
creases mutation rate or randomly initializes some individuals, 
etc). 

B. The Implemented Problem Instances 

For the current release, there are four problems included in 
the repository within the framework. These problems are the 
dynamic 0/1 knapsack problem, two versions of a simplified 
dynamic load balancing problem (with and without optimum 
solutions in the scenarios) and the moving peaks benchmark 
problem [3]. 

initialize test system; 
initialize EA; 
while not-finished do 

evaluation of individuals; 
if environment-changed 

handle change; 
parent selection; 
recombination; 
mucation; 
survivor selection; 

dons; 
terminate test system; 

Fig. 3. Outline of an example user-EA 

I )  The Dynamic 011 Knapsack Problem: The 0/1 knapsack 
problem is an NP-complete problem which is defined matbe- 
matically as finding 

n 

max vixi 
i= l  

subject to the weight constraint 

i=l 

where x i  are variables that can be set to either 0 or 1 
and 7~ is the problem size. The weight constraint W can be 
enforced by way of a penalty factor on the fitness value. 
If a solution is overweight then it is penalized by a factor 
proportional to the amount the actual weight is more than 
the maximum allowed weight. In the dynamic 0/1 knapsack 
problem, the weight constraint W is changed. In the example 
0/1 dynamic knapsack problem included in the framework (as 
previously defined in [16] by one of the authors), the fitness 
of an individual is calculated using a penalty approach.2 If a 
solution satisfies the weight constraint, no penalty is applied 
and the fitness is calculated as given in Equation 3. 

n 

vizi 
i=O 

(3) 

If the solution is overweight, the penalized fitness of the 
individual representing the overweight solution is calculated 
using Equation 4. This equation ensures that overweight indi- 
viduals are severely penalized and have fitness values between 
0 and 1. 

>For best performance in solving knapsack problems. other approaches for 
handling infeasible individuals can be used. The penalty function pro\ided 
here is given only as an example. 

2268 



2) The Simpl$ed Dynamic Load Balancing Problem: A 
simplified model of a dynamic load balancing of jobs on 
processing units (PU) is implemented (as previously defined 
in 1141 and in 1151 by one of the authors). The objective is to 
minimize the total load imbalance throughout the system. For 
simplification, the following assumptions are made about the 
system without loss of generality: 

All PUS in the system are equipped with the same type 
of resources with different capacities. 
All jobs may be migrated. 
There are no constraints. The total load on a PU may 
exceed its capacity. . At the beginning of job execution, the average resource 
(CPU,  UO, Memory) requirements per unit time for each 
job are determined randomly. It is assumed that actual 
resource requirements do not deviate too much from the 
average values. The load value assigned to the job is a 
function of average requirements per unit time for all 
types of resources. 
The migration costs are ignored. 

There are six possible types of change: 
arrival of a new job 
completion of a job 
change in the load of a currently existing job . addition of a new PU . removal of a PU . a change in the capacity of a currently existing PU 

The fitness of an individual shows how balanced the load 
distribution represented by the phenotype of that individual 
is. For each PU, the amount of load for that PU under ideal 
conditions, which will be called ideal load (E), is calculated 
using the current total load in the system and the capacities 
of each PU as given in Equation 5. 

Total  S y s t e m  Load 
Total  S y s t e m  Capaci ty  

I L ,  = * Capacity, ( 5 )  

The load imbalance (LI) of a PU is the absolute value of 
the difference between the actual load (AL) of a PU and its 
ideal load (IL). To normalize the total imbalance value, it is 
divided by the current total load in the system. The normalized 
load imbalance is given in Equation 6. 

C,JAL, - IL,l 
Total  Sys tem Load 

LIN = i = 0, l,..,, NoOfPUs (6)  

The fitness value f for an individual is calculated as in 
Equation 7: 

3) The Moving Peaks Benchmark Pmblem: To demonstrate 
the flexibility of the proposed framework, the moving peaks 
benchmark function developed by Branke 131 is also included. 
The moving peaks benchmark provides the EA with function 

calls to change the environment? However, this approach 
requires that the EA explicitly initiates a change in the environ- 
ment. In DEFEAT, a wrapper for the moving peaks benchmark 
is implemented and through this interface, the environment 
controller component interacts with the benchmark, imple- 
menting previously defined scenarios. So for this problem, 
the wrapper and the moving peaks benchmark together form 
the problem implementation component of the test framework. 
The source code and a detailed explanation of the moving 
peaks benchmark can be found at [18]. 

V. SAMPLE U S E  OF DEFEAT 

Two different modes of use for DEFEAT are given below. 
Two versions of the simplified dynamic load balancing prob- 
lem is implemented for the demonstrations. Firstly, a more 
controlled but restricted implementation will be explained 
where the optimum is known for each change instance. 
Secondly, using DEFEAT with still a simplified but a more 
realistic dynamic load balancing problem where the optimum 
is not known at each change instance will be explored. 

For both examples it will be assumed that there are initially 
10 jobs and 4 PUS in the system. An example initial resource 
definition file to be used by the problem component i s  given 
in Fig. 4 

jobs 10 
Pus 4 

U info on initial job zeso~rce requirements 
info jobs 

2110 
173 
3279 
218 
1205 
413 
1402 
1660 
89 

d info on initial PU capacities 
info PUS 
1263 

2300 
3050 

783 

896 

Fig. 4. 
problems 

Example resource definition file for the dynamic load balancing 

A. Usage Example 1 

In the first example, the problem instance where the op- 
timum at each change is known will be explored. Through 
the scenario creator, the user supplies the necessary input 
to generate an environment change scenario containing the 
change times and optimum solutions at each instance. 

'The moving peaks benchmark provides other function calls for perfor- 
mance measuring. Since this feature is lefl to future releases of DEFEAT, 
Ihese extra calls provided in the moving peaks benchmark are ignored in the 
current implementation. 

2269 



Assume that an example log file generated by the scenario 
creator is as given in Fig. 5 .  It can be seen in the log 
file that the base time unit for the changes is generations 
and interarrival times of the change events are exponentially 
distributed with a mean of 250 generations. The probabilities 
for the occurrence of each change severity type is defined 
and the scenario creator automatically creates the events as 
given at the end of the log file. The initial optimum solution 
is determined randomly. In the solution, each location on the 
string shows the PU the corresponding job is assigned to for 
achieving the optimum allocation. The new solutions in the 
next change instances are determined 6y changing the previous 
solution at a number of locations (determined randomly) as 
defined by the severity of the change. This method of changing 
the optimum solution corresponds to changes in the resource 
reauirements of iobs. or changes in the capacities of PUS. 

Fig. t 

Cdnsequently, no-new/finished;ob and no addearemoved PU 
events are possible in this version of the problem. As a result 
of this simplification, on the user-EA side, the chromosome 
length and the allele value range remains constant at all times. 

generate solutions = YES 
input solution string length = 10 
salvtion locus cardinality i 4 
LOW SEVERITY= 10.0.  0.25) I 
MEDIUM SEVERITY; 10.25. 0.751 
HIGH SEVERITY= 10.75. 1 - 0 1  I total no. of events = 11 
base time unit i GE-TIONS 
event generation method i ALUTOMRTTC 
internal-type = RRNDon 
distribution = EXP0"TIP.L lmu=250) 
chanae dvnamics = R A N W M  

~ ~ ~. 
LOW SEVERlTY change probability = 0 . 3 3 3  
NEOTUn SEVERITY change probability i 0 . 3 3 3  
HIGH SEVERITY change probability = 0 . 3 3 4  

events : 
0 0.2.0.1.3.2.1.0.0.3 
2 8 6  LOW 0 . 2 . 1 . 1 . 3 . 2 . 1 . 0 . 0 . J  
698 HIOH 3.2.3.2.0.0.3.1.0.1 
755 LOW 3.2.3.1.0.0.3.1.2.1 
951 LOW 2,2,3,1.0.0.3,1.2,1 
1135 HIOH 3,0,0.0,3,0,1.2.1.3 
1248 MEDIUM 1.2.0.0.2.3.1.0.1.3 . . ~ .  . . . . . 
1299 HIGH 2.1.2.0.2.1.3.3.3.0 
1634 LOW 2.1.2.0.0.1.3.1.3.0 
1700 MEDIUM 2,3.1.2,0,3.3.1,0.1 
in50 HIGH 0.2.3.0.1.2.2.5.2.1 I 

Fig. 5. Example lag from scenario creator component (including solutions) 

The actual scenario file used by the environment controller 
is as given in Fig. 6. This scenario file is generated by the 
scenario creator component using the settings shown in the 
log file and it only contains the event times and optimum 
values for each change instance. 

On the user-EA side, as a result of initializing the test 
system, . the chromosome length is set to IO as determined by the 

number of jobs, 
allele value type is set to be integers, - the allele value range is set to be between 0 and 3 as 
determined by the number of PUS. 

For each individual evaluation request the user-EA makes, the 
environment controller checks the scenario to see if it is time 

uevent info 
#time solution 
0 0.2.0.1.3.2.1.0.0.3 
286 0.2.1.1.3.2.1.0.0.3 
698 3.2.3.2.0,0.3.1.0.1 
155 3.2.3.1.0.0.3.1.2.1 
951 2.2.3.1.0.0.3.1.2.1 . . . ~~ 

1135 3.0.0.0.3.0.1.2.1.3 
1218 1,2.0,0,2.3.1,0.1.3 
1299 2.1.2.0.2.1.3.3.3.0 
1634 2.1.2.0.0.1.3.1.3.0 
1700 2.3.1.2.0.3.3.1.0.1 
1850 0 ~ 2 ~ 3 ~ 0 ~ 1 . 2 ~ 2 ~ 3 ~ 2 . 1  

Example scenario 1 le (including solutions) 

for a change. If it is not, it passes on the current optimum value 
and the individual to be evaluated to the problem component. 
In the problem component, the ideal loads for the PUS are 
calculated by using the optimum solution to find the ideal 
distribution of the jobs. The actual initial capacities of the 
PUS are not used in this version of the problem. It is assumed 
that the distribution supplied as the optimum solution by the 
environment controller component is the ideal distribution 
which is based on the current capacities of the PUS in the 
system. The fitness of an individual is calculated based on 
this ideal load value as given in Equation 7. The fitness value 
and the values corresponding to the chromosome length and 
the allele range in the user-EA are returned to the environment 
controller component. 

The environment controller sends the fitness evaluation 
result and the new chromosome length and allele value range 
to the user-EA as well as a notification whether a change 
occurred or not. In this version of the problem, since no 
changes affect the. chromosome length and the allele value 
range, the user-EA can ignore these notifications. 

At the end of the user-EA run, the test system and conse- 
quently the problem instance are terminated. For this release of 
DEFEAT, performance assessment and statistical calculations 
are left to the user-EA. 

B. Usage Example 2 

In this second example, the problem instance where the 
optimum at each change is not known will be explored. In 
this version, all six types of change (new job, finished .job, 
changed job resource requirements, added PU, removed PU, 
changed PU capacities) can be implemented. The problem 
component needs to keep track of the current environment, i.e. 
the number of jobs and PUS currently existing in the system 
and their corresponding resource requirements and capacities 
respectively. Through the scenario creator, the user supplier. the 
necessary input to generate an environment change scenario 
composed only of change event times. 

Assume that an example log file generated by the scenario 
creator is as given in Fig. I. It can be seen in the log file 

2270 



that the base time unit for the changes is again generations 
and interarrival times of the change events are exponentially 
distributed with a mean of 250 generations. However there is 
no infomation regarding the optimum solution at each change 
interval 

generate eolutions = NO 
input sohtion string length = 10 
solution locus cardinality = 4 
total no. of events = 7 
base time unit = GLNERIITIONS 
event generation method = AUTOMATIC 
interval-type i RlVlWM 
distribution = EXP0"PIAL tmu=250) 
eVentS : 
0 
286 
755 
951 
1268 
1299 
1700 

Fig. 7. Example log from scenario meam component (without solutions) 

The actual scenario file used by the environment controller 
is given in Fig. 8. This scenario file is generated by the 
scenario creator component using the settings shown in the 
log file and it only contains the event times. 

llEXPOl2501 
*no of events I ?  

Fig. 8. Example scenario file (without solutions) 

Since the resource definitions are the same as in the previous 
example, on the user-EA side, the same initial parameter 
settings for chromosome length, allele value data type and 
allele value range take place as a result of the initialize test 
system call. 

For each individual evaluation request the user-EA makes, 
the environment controller again checks the scenario to see if 
it is time for a change. Tken it passes on the individual to be 
evaluated and a flag to indicate whether a change occurred 
or not to the problem component. If it is not time for a 
change, as indicated by theivalue of the flag, in the problem 
component, the ideal loads for the PUS are calculated by using 
the current total load in the system and the capacities of all 
the PUS as given in Equation 5. Fitness of an individual is 
calculated based on this ideal load value and returned to the 
environment controller component. If it is time for a change, 
the problem component initiates a change and makes the 
appropriate adjustments (e:g. total load in system, number of 

jobs and PUS, etc). The different possible types of change and 
their corresponding occurrence probabilities are all defined 
and implemented in the problem component. The problem 
component reports the current number of jobs and PUS to the 
environment controller. 

The environment controller sends this information (the 
chromosome length and the allele value range on the user-EA 
side) to the user-EA along with the fitness of the individual 
and a notification that a change has occurred. In this version 
of the problem, some types of change (newlfinished job and 
addedremoved PU events) affect the chromosome length and 
the allele value range, so the user-EA needs to check these 
notifications to make the necessary adjustments if needed. 

Even though the environment controller sends the new 
chromosome length and the new allele value range to the. 
user-EA, it does not include any information such as which 
job is finished or which PU is removed. To overcome this 
limitation, some changes need to be made to the function 
call interfaces both between the user-EA and the environment 
controller and also between the environment controller and the 
problem component. However, this would cause the framework 
to be more problem specific and will compromise its flexibility. 

As in the previous version of the problem, at the end of the 
user-EA run, the test system and consequently, the problem 
instance are terminated. 

VI. DEFEAT AS A DYNAMIC ENVIRONMENT TEST 
FRAMEWORK FOR EAS 

Through the implemented components, DEFEAT satisfies 
the desired features of a good test problem generator as can 
be seen below: 

Through the scenario creator component, different types 
of controlled change instances, having the desired differ- 
ent change severities and desired types of change time 
intervals, can be implemented. 
Through the problem implementation component, differ- 
ent problems can be defined. The actual definition of 
the problem determines how extensions to real-world 
problems can be made. 
Since the test framework is used through basically three 
function calls from within a user-EA, it is very easy to 
use. 
The scenario creator program, especially when used in the 
automatic mode, acquires the necessary settings from the 
user and creates scenarios accordingly, requiring no other 
implementation changes. The problem implementation 
component needs to be rewritten to implement different 
problems, however it is quite easy to integrate the new 
problem into the framework due to the well defined 
interface between the environment controller and problem 
implementation components. 
The whole test environment source code is currently 
developed using ANSI C so that it can be built and used 
on a variety of platforms. 

2271 



VII. CONCLUSIONS AND FUTURE W O R K  

In this paper, an event-based test framework for EAs in 
dynamic environments (DEFEAT) is presented. DEFEAT is 
made up of components that separate the user-EA from 
the environment change control mechanjsm and the problem 
implementation, making it easy to work with various problems 
and problem instances. It also includes a repository of imple- 
mented benchmark functions. The event-based approach and 
helper tools such as the scenario creator make it a suitable test 
framework that meets the requirements expected from such test 
environments. Through these features it can form a basis for 
making healthy comparisons between various EA approaches 
and implementations on dynamic environments. 

DEFEAT is still at the very early stages of its development. 
There are some features to be included in future releases. Cur- 
rently, performance measures and statistical calculations are 
left to the user-EA. However, these will be incorporated into 
the main environment controller component for standardiza- 
tion in performance comparisons. More benchmark problems 
(as needed by the users of DEFEAT) will be implemented 
and included. Random events currently occur either according 
to the uniform distribution or the Poisson process. However, 
other distributions will be implemented as needed. The first 
release of DEFEAT is implemented in C for a more wide- 
spread usage among the EA community, however the authors 
are considering to continue with further implementations using 
an abject-oriented language to provide a cleaner interface and 
more flexibility for further improvements. 

REFERENCES 

[ I ]  Baeck T., "On the Behavior of Evolutionary Algorithms in Dynamic 
Environmena", IEEE International Conference on Evolutionary Cam- 
putation, pp. 4 . 4 5 1 ,  IEEE. 1998. 

I21 Branke 1.. "Evolutionary Algorithms for Dynamic Optimilation Prob- 
lems - A Survey". Technical Report 387, Institute AIFB. University of 
Karlsruhe, 1999. 

131 Branke I., "Memory Enhanced Evolutionary Algorithms for Changing 
Optimization Problems", Proceedings of Congress on Evolutionary 
Computation CEC-99, pp. 1875-1882, IEEE, 1999. 

I41 Branke J., Kaussler T., Schmidt C.. Schmeck H.. "A Multi-Population 
Approach lo Dynamic Optimization Problems", Adaptive Computing in 
Design and Manufachlring 2000. Springer, 2000. 

I51 Branke J., "Evolutionary Optimization in Dynamic Environments", 
Kluwer Academic, 2002. 

161 Gmpar A., Collard P., "Time Devendent Ovtimization with a Foldine. .~ . 
Genetic algorithm:. Inlemationai Confercnie on Tools for Artis c i i  
Intelligence, pp. 207-214, IEEE Computer Society Press. 1991. 

171 Lewis J.. Han E., Graeme R., "A Comparison of Dominance Mecha- 
nisms and Simple Mutation on Non-Stationary Problems", Proceedings 
of Parallel Problem Solving from Nature, vol. 1498 of LNCS Springer 
Verlag. 1998. 

181 Morrison R. W., De Jong K. A.. "A Test Problem Generator far Non- 
Stationary Environments", Proceedings of Congress on Evolutionay 
Computation CEC-99, pp. 2047.2053. IEEE, 1999. 

191 Morrison R. W., De long K. A., 'Triggered Hypemutation Revisited", 
Proceedings of the 2000 Congress on Evolutionay Computation CEC- 
00, pp. 1025-1032, IEEE, 2wO. 

[IO] Ng K.P., Wong K.C., "A New Diplaid Scheme and Dominance Change 
Mechanism far Non-Stationary Function Optimization". Practrdiogs of 
the Sixth International Conference on Genetic Algorithms, pp. 159.146. 
Morean-Kaufmann. 1995. ~~~~~ , L 1 ~  ~~ 

[ I l l  Ryan C., "Diploidy without Dominance". 3rd Nordic Workshop on 
Genetic Algorithms, pp. 63-70, 1997. 

[I21 Smith R. E., "Diploid Genetic Algorithms for Search in Time Varying 
Environments", Almual Southeast Regional Conference of the ACM. pp. 
175-179. 1987. 

1131 Smith R. E., Smith I. E., "New Methods for Tunable. Random Land- 
scapes", Proceedings of Foundations of Genetic Algorithms 6, pp. 47-68, 
Morgan-Kaufmann, 2001 

[I41 Uyar A. S., Hmnanci A. E., "Application of an Improved Diploid 
Genetic Algorithm far Optimizing Performance Through Dynamic Load 
Balancing". Advances in Simulation. Systems Theory and Systems 
Engineering. Elecmncd and Computer Engineering Series. pp. 423-428. 
WSEAS Press, 2002. 

1151 Uyar A. S . .  H m a n c i  A. E.. "An Adaptive Domination Map Approach 
for Multi-Allelic Diploid Genetic Algorithms", in GECCO 2003: Ge- 
netic and Evolutionary Computation Conference Late Breaking Papers, 
pp. 291-298, 2003. 

1161 Uyar A. S., H m a n c i  A. E.. "Comparison of Domination Approaches 
for Diploid Binary Genetic Algorithms", Applications and Science 
in Soft Computing, Advances in Soft Computing Series, pp. 75-80. 
Springer, 2004. 

[I71 http://wwwnifbuni-~nrlsnrhe.de/jbr/GECCO2~3/. "Evolutionary Al- 
eorithms for Dvnamic Ootimization Problems Workshov" van of . .  
Genetic and Evblutionary 'Computation Conference (GECCO-2003). 
Chicago . USA, July 12, 2003. 

[I81 h t ~ : / / w w w o l ~ . u n i - ~ a r I s r u h e . d ~ ~ b , / ~ ~ " ~ ~ = ~ ,  The Moving Peaks 
Benchmark 

2272 


