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Abstract. Genetic algorithms have been applied to a diverse field of
problems with promising results. Using genetic algorithms modified to
various degrees for tackling dynamic problems has attracted much atten-
tion in recent years. The main reason classical genetic algorithms do not
perform well in such problems is that they converge and lose their genetic
diversity. However, to be able to adapt to a change in the environment,
diversity must be maintained in the gene pool of the population. One
approach to the problem involves a diploid representation of individuals.
Using this representation with a dynamic dominance map mechanism
and meiotic cell division helps preserve diversity. In this paper, the ef-
fects of using diploidy and meiosis with such a dominance mechanism
are explored. Experiments are carried out using a variation of the 0-1
knapsack problem as a testbed to determine the effects of the different
aspects of the approach on population diversity and performance. The
results obtained show promising enhancements.

1 Introduction

Genetic algorithms have been applied to a diverse field of problems with promis-
ing results. While most of these mainly address stationary problems, there’s
another group where the problem is dynamic and is represented by a chang-
ing fitness function. This class of problems are characterized by a need for a
mechanism to adapt to the change. Different characteristics of changing fitness
functions can be exploited in different ways to obtain a near optimal solution.
Criteria for categorizing dynamic environments have been given as follows [2]:

– frequency of change
– severity of change
– predictability of change
– cycle length / cycle accuracy

The development of a modified algorithm which would perform better than the
others in specific types of problems may be accomplished by first using the above
given criteria for categorizing the type of change in the environment and then
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deciding on an appropriate approach. However, no matter into which category
the problem falls, diversity plays an important role in performance. The main
reason why traditional algorithms do not perform well in such cases is that they
converge to a solution and the population loses its genetic diversity. Consequently
when a change occurs it is hard for the converged population to adapt. There
are different ways to achieve the diversity needed in the population. The main
approaches in coping with changing environments are summarized in [2] and
discussed in [6].

In this study, a diploid representation is used to maintain the desired diver-
sity. However, as shown in [9] diploidy alone is not sufficient and other mecha-
nisms combined with an adaptive dominance map is needed. This paper focuses
on the importance of preserving diversity in the population and how different
parts of the chosen diploid algorithm contributes to this end.

2 The Diploid Algorithm and Population Diversity

The diversity in a population is lost when the gene pool of the population loses
its diversity. This is closely related to the concept of convergence as defined in
[1]. According to the definition, a locus is said to converge if at least 95% of the
individuals have the same allele at their corresponding loci. And a population
is said to converge if all loci of the chromosomes have converged. At this point,
diversity in the gene pool of the population is lost.

Since a standard genetic algorithm converges to a solution after several gen-
erations (depending on the genetic algorithm parameters chosen and population
size), it may not be able to follow a change that occurs after this stage. The only
mechanism a standard genetic algorithm has for introducing diversity into the
gene pool is mutation and the probability of mutation is typically chosen to be
very small. Other mechanisms or variations are needed to maintain genotypic
diversity in a population.

2.1 Representation and the Domination Mechanism

In the algorithm chosen for this study, each individual is represented with three
chromosome strings and a fitness value. Chromosome 1 and chromosome 2 are
homologues and form the diploid genotype of the individual. The third string
which is the phenotype, shows the characteristics that are expressed. In this
implementation, the chromosome and the phenotype strings each are made up
of either a 1 or a 0 at each location.

The phenotype of the individual is the set of characteristics that are ex-
pressed. The fitness is determined using the phenotype. Therefore a mechanism
to map the genotype onto the phenotype is needed. This is a very important
part of diploid genetic algorithms and there has been some research done most
of which are explained in detail in, [3], [4], [5], [6], [7], [8], [9], [10], [11], [12].

When determining the phenotype, the genotype elements corresponding to
that location may either be equal or different. In the cases where the two alle-
les for the genes on homologue chromosomes are the same, the corresponding
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phenotype equals that allele but in the case where they are different a method
to determine the phenotypic value is needed. In natural organisms the domi-
nant allele is seen in the phenotype, so a mechanism to simulate this in artificial
systems will be used. In this implementation, a domination array composed of
real numbers in [0.0, 1.0] is used. The length of the array is the same as the
chromosome length with each value showing the dominance factor of the allele
1 over the allele 0 corresponding to the same location on the chromosomes. For
example, if the alleles on the two chromosomes are different for the ith location
and if the ith entry in the domination array is domi = 0.8, the phenotypic value
for that location will be 1 with probability 0.8 and 0 with probability 0.2.

The domination array evolves along with the individuals in each population
and is calculated using Equation 1.

Domi =

∑
j pij ∗ fj
∑

j fj
, i = 1, 2, .., length j = 1, 2, ...size, (1)

where pij is the phenotypic value of the jth individual at the ith location, fj

is the fitness value of the jth individual, length is the chromosome length and
size is the population size (the total number of individuals in the population).
Equation 1 is evaluated at the end of each generation using the phenotype and
fitness values of the individuals in that population.

2.2 The Main Steps of the Algorithm

The diploid algorithm chosen as the basis for this study is explored in greater
detail and compared against other approaches in [13], where overlapping pop-
ulations with the introduction of an aging mechanism and a possible random
replacement of aged individuals is used. However, for the purposes of this study,
the offspring replace their parents causing no overlapping between populations
in consecutive generations and thus there’s no aging and random replacement of
older individuals. The simplified algorithm used here is given below.

begin
initialization;
do
reproduction;
mutation;
calculation of new domination vector;

until stop ;
end.

The initialization step is similar to the one in the simple genetic algorithm. Each
of the genes on the two chromosomes is initialized randomly to be a 0 or a 1.
All locations on the domination array are initialized to 0.5. After this step, the
phenotypes of the individuals are determined using the initial domination array
and the fitnesses are calculated based on the phenotypic values.
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The reproduction phase consists of selection of the mating pairs, gamete for-
mation through meiosis, pairing off and the actual mating phase to form the
offspring. A roulette wheel selection mechanism is used to determine the indi-
viduals which will go into reproduction. Gametes in natural, diploid organisms
are the haploid reproductive cells. One haploid gamete from each mating pair
comes together to make up the diploid cell of the offspring. In most cases in
nature, gamete formation is the result of a cell division process called meiosis. In
this artificial implementation, each parent goes through a meiotic cell division
separately. In the first step of meiosis, a copy of each chromosome string is made
during which errors may occur. The chromosome and its copy are called sister
chromatids. At the end of this step, the individual has four haploid chromatids.
In the second step, crossing over may occur between non-sister chromatids. In
this implementation, a two point cross-over approach is used. In the final step,
after each mating parent completes its meiosis-like process, there are four ga-
metes from each parent, ready to go into mating. Since each mating produces two
offspring, two gametes from each parent are selected at random and each gamete
from each parent goes to each one of the offspring. As a result of each mating,
two offspring are produced which replace their parents in the population.

The mutation operator is as defined in the simple genetic algorithm. Mutation
acts directly on the genotype, i.e. for the diploid case, on each gene of the two
strands of chromosomes.

At the end of each generation, the new domination array is calculated using
Equation 1. This new array will be used in the next generation for determining
the phenotypes of the individuals in that population from their genotypes.

3 Tests for Effects on Diversity

The complete algorithm used in these tests is explained in Section 2. To see the
effects of the diploid representation and the meiotic cell division on performance
and diversity separately, this algorithm is modified. The modified algorithm con-
sists basically of the same steps as given in Section 2. However, in the repro-
duction phase, gametes are not obtained using meiotic cell division but chosen
directly as the chromosomes of the parents. Tests are performed to compare the
full diploid algorithm, the modified version (without meiosis) and the simple
(haploid) genetic algorithm with regard to how they preserve diversity in the
genotypic and phenotypic levels and how they perform in following the change.

3.1 The Test Function

A modified version of the 0-1 knapsack problem defined in [12] is used. Mathe-
matically the problem can be represented as finding

max
∑n

i=1 vixi subject to the weight constraint max
∑n

i=1 wixi,

where xi are variables that can either be 1 or 0, vi and wi are given problem
specific parameters, n is the problem size and W is the weight constraint.
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It is important to note that the chosen knapsack has only one solution for each
possible weight constraint. In the modified knapsack problem used in this study,
change in the environment is implemented by changing the weight constraint at
random intervals. It must be noted that this change is not periodic and is not
predictable. In order to have controlled experiments, the change instances and
the values for the weight constraint for that instance is kept the same for each
test case. These are given in Table 1 where each row gives the generation number
when the change occurs, the value for the new weight constraint, the Hamming
distance between the previous and the new solutions which is calculated as the
number of positions which have different values and the optimal solution values
and strings at that change instance.

Table 1. Change Instances and Values

i Genr. No. Weight Cons. Hamming Dist. Opt. Sol. Val. Opt. Sol. String

0 0 115 0 131070 01111111111111111
1 50 40 9 128512 00000000011011111
2 525 11 4 110600 00010000000011011
3 1997 22 1 112648 00010000000111011
4 2027 23 5 114688 00000000000000111
5 2357 100 12 131066 01011111111111111
6 2845 36 8 128032 00000100001011111

The same set of genetic algorithm parameters, where applicable, are used in
each test case. The population size is 250, the maximum number of generations
is 3000, the crossing over probability is pcross = 0.9, the mutation probability is
pmut = 0.001 and the probability of copy error in meiosis is perr = 0.001.

4 Experimental Results

The results will be given as tables and plots of performance for the simple genetic
algorithm (SGA), the algorithm with only diploidy and the adaptive dominance
map (BareGA) and the full algorithm with diploidy, dominance and the meiotic
cell division (withMeiosGA). The tables list the optimal solutions, the best so-
lution values found by the algorithm, the number of steps after the change it
took the algorithm to obtain the values and the percentage error of the found
solutions to the optimals for each generation interval. In the performance plots,
the x-axis shows the number of generations and the y-axis shows the solution
values found. In changing environments, finding better and acceptable solutions
quickly is as important as finding the optimal solutions. As can be seen in the
plots and tables, even though it may take longer for a specific algorithm to find
its best result, it may have found acceptable results much earlier.
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Table 2. SGA results 
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Table 3. BareGA results 
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Fig. 1. Plot for SGA 
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Fig. 3. Plot for withMeiosGA 

Next, three change instances chosen according to the nature of the change 
will be examined more closely to understand the way each algorithm acts. These 
three change instances are marked on the general plots. 

4.1 Case 1 

The first instance is at generation 525. This change occurs 475 generations after 
the previous one and the hamming distance is 4. At the time of the change, 
for the SGA, 15 loci have converged in the population; for the BareGA, 7 have 
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converged in the genotype and 15 in the phenotype; for the withMeiosGA, 2
have converged in the genotype and 10 in the phenotype.

The SGA finds the new solution in 57 generations (Fig. 4), the BareGA in 17
generations (Fig. 5) and the withMeiosGA in 7 generations (Fig. 6). This result
is directly related to the amount of loci converged in each population. For the
two cases of the diploid algorithm, even though the population is almost at the
same level of phenotypic convergence with the SGA, on the genotypic level, both
have preserved their population diversity to a greater extent. The diversity on
the genotypic level helps the population to adapt to a change much quicker.
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Fig. 4. SGA after genr. 525
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Fig. 5. BareGA after genr. 525
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4.2 Case 2

The second instance is at generation 2027. This change occurs 30 generations
after the previous one and the hamming distance is 5. At the time of the change,
for the SGA, 15 loci have converged in the population; for the BareGA, 6 have
converged in the genotype and 12 in the phenotype; for the withMeiosGA, 1 has
converged in the genotype and 9 in the phenotype.

The SGA and BareGA can not find a solution (Fig. 7 and Fig. 8); they get
stuck at the solution found for the previous change instance. The withMeiosGA
cannot find the exact solution but it is able to find a better solution (Fig. 9).

Fig. 6. withMeiosGA after genr. 525
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This result is directly related to the amount of loci converged at the time of the
change. The fact that the change occurs very shortly after the previous one also
plays a role in the results obtained. The converged loci and the severity of the
change, represented by the hamming distance, are similar to the previous case.
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Fig. 7. SGA after genr. 2027
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Fig. 8. BareGA after genr. 2027
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4.3 Case 3

The third instance is at generation 2357. This change occurs 330 generations after
the previous one and the hamming distance is 12. At the time of the change,
for the SGA, 16 loci have converged in the population; for the BareGA, 3 have
converged in the genotype and 14 in the phenotype; for the withMeiosGA, 2
have converged in the genotype and 11 in the phenotype.

Again in this case none of the three algorithms can find the exact solution
(Fig. 10, 11 and 12). However, the withMeiosGA finds a solution better than
the others and finds it much quicker than the other two. The SGA finds its best
solution around generation 2800. The BareGA finds its best solution around
generation 2620. The withMeiosGA finds its best solution around generation
2420. The amount of loci converged in each populations still plays an important
role but the main difference from the previous two cases is the severity of the
change characterized by the high hamming distance.

Fig. 9. withMeiosGA after genr. 2027
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Fig. 10. SGA after genr. 2357
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Fig. 11. BareGA after genr. 2357
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5 Conclusion

The algorithms chosen in this study have different features which address differ-
ent aspects of a changing environment. Each feature contributes in in preserving
the diversity in the population and tracking the change The graphs for each case
given in the previous sections are in keeping with those that are to be expected
for each case. The change instances that were explored can be grouped as follows:

– Change occurs after a moderate amount of generations and the severity of
the change is moderate.

– The number of generations between two change instances is very low and
the change is again moderately severe.

– Change occurs again after a moderate amount of generations but the severity
of the change is quite high.

All three cases require a high amount of diversity to be present in the popula-
tion. The first and third cases show similar characteristics: the change occurs
after a moderate amount of generations have elapsed, giving the populations
time to converge to a solution. The convergence rates in the SGA are similar to
the rates for both diploid cases on the phenotypic level. Since fitness is based

Fig. 12. withMeiosGA after genr. 2357
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on the phenotype of an individual, the fact that the SGA and the diploid al-
gorithms perform as well in cases when there’s no change is important. The
domination array directs the convergence rate on the phenotypic level. However
on the genotypic level, the diploid cases show greater diversity; so when a mod-
erately severe change occurs, the diversity preserved in the genotype helps the
population to adapt to the change much quicker than the haploid SGA which has
almost totally converged. The difference between the first and third cases arises
from the severity of the change. In the third case the hamming distance between
the solutions is quite high, making it harder for the population to adapt to. In
this case diversity plays an even more important role. The SGA is again almost
converged but the both diploid cases have quite a low number of converged loci
in the gene pool and they have preserved their diversity to a greater extent. This
makes them more robust and allows them to adapt to the change much quicker.
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