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Istanbul Technical University
Electronics and Communications Engineering Department



ISSPA 2010, Malaysia RLS Adaptive Filtering with Sparsity Regularization - p.2

Main Headings



ISSPA 2010, Malaysia RLS Adaptive Filtering with Sparsity Regularization - p.2

Main Headings

� Introduction



ISSPA 2010, Malaysia RLS Adaptive Filtering with Sparsity Regularization - p.2

Main Headings

� Introduction
� ℓ1-RLS Algorithm



ISSPA 2010, Malaysia RLS Adaptive Filtering with Sparsity Regularization - p.2

Main Headings

� Introduction
� ℓ1-RLS Algorithm
� Simulation Results



ISSPA 2010, Malaysia RLS Adaptive Filtering with Sparsity Regularization - p.2

Main Headings

� Introduction
� ℓ1-RLS Algorithm
� Simulation Results
� Conclusions



ISSPA 2010, Malaysia RLS Adaptive Filtering with Sparsity Regularization - p.3

Introduction

� Sparse adaptive filtering, where the impulse response for
the system to be identified is assumed to be of a sparse
form has acquired attention recently.



ISSPA 2010, Malaysia RLS Adaptive Filtering with Sparsity Regularization - p.3

Introduction

� Sparse adaptive filtering, where the impulse response for
the system to be identified is assumed to be of a sparse
form has acquired attention recently.

� The sparsity prior has applications in acoustic and network
echo cancellation and communication channel identification.



ISSPA 2010, Malaysia RLS Adaptive Filtering with Sparsity Regularization - p.3

Introduction

� Sparse adaptive filtering, where the impulse response for
the system to be identified is assumed to be of a sparse
form has acquired attention recently.

� The sparsity prior has applications in acoustic and network
echo cancellation and communication channel identification.

� Proportionate adaptive algorithm is a well-known approach
to the problem.
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Introduction

� Recently, novel LMS type algorithms which incorporate the
sparsity condition directly into the cost function have been
developed.

� The common idea is to add a penalty term in the form of an
ℓp norm of the weight vector into the overall cost function to
be minimized.

� Sparsity based adaptive algorithms have been mostly
confined to the LMS domain.



ISSPA 2010, Malaysia RLS Adaptive Filtering with Sparsity Regularization - p.5

Introduction

� Recursive least squares (RLS) adaptive filtering is another
important modality in the adaptive system identification
setting.



ISSPA 2010, Malaysia RLS Adaptive Filtering with Sparsity Regularization - p.5

Introduction

� Recursive least squares (RLS) adaptive filtering is another
important modality in the adaptive system identification
setting.

� In this paper, we propose an RLS adaptive algorithm for
sparse system identification.



ISSPA 2010, Malaysia RLS Adaptive Filtering with Sparsity Regularization - p.5

Introduction

� Recursive least squares (RLS) adaptive filtering is another
important modality in the adaptive system identification
setting.

� In this paper, we propose an RLS adaptive algorithm for
sparse system identification.

� The algorithm will utilize the modified RLS cost function with
an additional sparsity inducing ℓ1 penalty term.



ISSPA 2010, Malaysia RLS Adaptive Filtering with Sparsity Regularization - p.5

Introduction

� Recursive least squares (RLS) adaptive filtering is another
important modality in the adaptive system identification
setting.

� In this paper, we propose an RLS adaptive algorithm for
sparse system identification.

� The algorithm will utilize the modified RLS cost function with
an additional sparsity inducing ℓ1 penalty term.

� We find the recursive minimization procedure in a manner
similar to the conventional RLS approach.



ISSPA 2010, Malaysia RLS Adaptive Filtering with Sparsity Regularization - p.5

Introduction

� Recursive least squares (RLS) adaptive filtering is another
important modality in the adaptive system identification
setting.

� In this paper, we propose an RLS adaptive algorithm for
sparse system identification.

� The algorithm will utilize the modified RLS cost function with
an additional sparsity inducing ℓ1 penalty term.

� We find the recursive minimization procedure in a manner
similar to the conventional RLS approach.

� The difference occurs in the weight vector update equation,
where a novel zero-attracting, sparsity inducing additional
term is included.



ISSPA 2010, Malaysia RLS Adaptive Filtering with Sparsity Regularization - p.5

Introduction

� Recursive least squares (RLS) adaptive filtering is another
important modality in the adaptive system identification
setting.

� In this paper, we propose an RLS adaptive algorithm for
sparse system identification.

� The algorithm will utilize the modified RLS cost function with
an additional sparsity inducing ℓ1 penalty term.

� We find the recursive minimization procedure in a manner
similar to the conventional RLS approach.

� The difference occurs in the weight vector update equation,
where a novel zero-attracting, sparsity inducing additional
term is included.

� We will call this new algorithm as the ℓ1-RLS.
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Introduction

� Firstly give a brief outline of the adaptive system
identification setting.

� Then, we develop the novel ℓ1-RLS algorithm by outlining
the similarities to the development of regular RLS.

� We give the final form of ℓ1-RLS algorithm.
� We will present simulation results comparing the novel

ℓ1-RLS algorithm to regular RLS, regular LMS and other
adaptive algorithms.
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ℓ1-RLS Algorithm

� Consider the system identification setting given by the
following input-output equation.

y(n) = hTx(n) + η(n) (1)

� The aim of the adaptive system identification algorithm is to
estimate the system parameters h from the input and output
signals in a sequential manner.

� In conventional RLS, the cost function to be minimized by
the weight estimate is given by

E(n) =
n

∑
m=0

λn−m|e(m)|2. (2)
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ℓ1-RLS Algorithm

� We assume that the underlying filter coefficient vector h has
a sparse form.

� Hence, we want to modify the cost function in a manner that
underlines this a priori information.

� A tractable way to force sparsity is by using the ℓ1-norm of
the weight vector.

� Hence, we regularize the RLS cost function by including the
weighted ℓ1 norm of the current tab estimate as a sparsifying
term.
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ℓ1-RLS Algorithm

J(n) =
1

2
E(n) + γ‖h(n)‖1 (3)

� Here, γ > 0 is a parameter that governs the tradeoff
between sparsity and estimation error.

� ‖h(n)‖1 is the ℓ1 norm of the weight vector and is given by

‖h(n)‖1 =
N−1

∑
k=0

|hk(n)| (4)
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ℓ1-RLS Algorithm

� We want to minimize this regularized cost function J(n) with
respect to the filter tab weights.

� In the standard RLS case when the cost function is simply
E(n), the minimization condition is written in terms of the
gradient of E(n) with respect to h(n).

� However, the ℓ1 norm term ‖h(n)‖1 in J(n) in (3) is
nondifferentiable at any point where hk(n) = 0.

� A substitute for the gradient in the case of nondifferentiable
convex functions such as ‖h(n)‖1 here is offered by the
definition of the subgradient.
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� One subgradient vector of the penalized cost function J(n)
with respect to the weight vector h(n) can be written as

∇S J(n) =
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2
∇E + γ sgn

(

h(n)
)

(5)
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ℓ1-RLS Algorithm

� One subgradient vector of the penalized cost function J(n)
with respect to the weight vector h(n) can be written as

∇S J(n) =
1

2
∇E + γ sgn

(

h(n)
)

(5)

� The ith element of this vector is calculated as below.
{

∇S J(n)
}

i
= −

n

∑
m=0

λn−me(m)x∗(m − i + 1) + γ sgn
(

hi(n)
)

(6)
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n

∑
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λn−m
{
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N−1
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k=0

ĥk(n)x(m− k)
}

x∗(m− i+ 1) = −γ sgn
(
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ℓ1-RLS Algorithm

� We set the subgradient equal to zero to find the optimal least
squares solution, namely ĥ(n).

−
n

∑
m=0

λn−m
{

y(m)−
N−1

∑
k=0

ĥk(n)x(m− k)
}

x∗(m− i+ 1) = −γ sgn
(

ĥi(n)

(7)

� Written for all i = 1, . . . , N together in a matrix form, results
in the modified deterministic normal equations.
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ℓ1-RLS Algorithm

Φ(n)ĥ(n) = r(n)− γ sgn
(

ĥ(n)
)

(8)

� Here, Φ(n) is the exponentially weighted deterministic
autocorrelation matrix estimate.

� r(n) is the deterministic cross-correlation estimate between
y(n) and x(n).

� These two quantities can be updated by rank-one recursive
equations.

Φ(n) = λΦ(n − 1) + x∗(n)xT(n)

r(n) = λr(n − 1) + y(n)x∗(n)
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ℓ1-RLS Algorithm

� Instead of solving the normal equations for the optimal least
squares solution ĥ(n) directly, search for an iterative
solution.

� We assume that the sign of the weight values do not change
significantly in a single time step.

� The normal equation can be rewritten as

ĥ(n) = P(n)θ(n) (9)

where P(n) is the inverse of the autocorrelation matrix.

P(n) = Φ
−1(n)
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ℓ1-RLS Algorithm

� We come up with the following result.

ĥ(n) = P(n − 1)θ(n − 1)− k(n)xT(n)P(n − 1)θ(n − 1)

+ y(n)k(n) + γ
(λ − 1

λ

)

×
{

P(n− 1) sgn
(

ĥ(n− 1)
)

−k(n)xT(n)P(n− 1) sgn
(

ĥ(n− 1)
)

}
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ℓ1-RLS Algorithm

� We come up with the following result.

ĥ(n) = P(n − 1)θ(n − 1)− k(n)xT(n)P(n − 1)θ(n − 1)

+ y(n)k(n) + γ
(λ − 1

λ

)

×
{

P(n− 1) sgn
(

ĥ(n− 1)
)

−k(n)xT(n)P(n− 1) sgn
(

ĥ(n− 1)
)

}

� Here, k(n) is the gain vector.

k(n) =
P(n − 1)x∗(n)

λ + xH(n)P(n − 1)x(n)
(10)
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performed by the well known Riccati equation.

P(n) = λ−1
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P(n) = λ−1
{

P(n − 1)− k(n)xT(n)P(n − 1)
}

(11)

� The recursive update for the tab weight vector assumes its
final form.

ĥ(n) = ĥ(n − 1) + k(n)
{

y(n)− ĥT(n − 1)x(n)
}

+

γ
(λ − 1

λ

){

IN − k(n)xT(n)
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(

ĥ(n − 1)
)
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ℓ1-RLS Algorithm

� Using the matrix inversion lemma, it can be shown that the
time update for the inverse correlation matrix can be
performed by the well known Riccati equation.

P(n) = λ−1
{

P(n − 1)− k(n)xT(n)P(n − 1)
}

(11)

� The recursive update for the tab weight vector assumes its
final form.

ĥ(n) = ĥ(n − 1) + k(n)
{

y(n)− ĥT(n − 1)x(n)
}

+

γ
(λ − 1

λ

){

IN − k(n)xT(n)
}

P(n − 1)sgn
(

ĥ(n − 1)
)

(12)

� This update equation finalizes the ℓ1-RLS algorithm.
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� for n := 0, 1, 2, . . .

� kλ(n) = P(n − 1)x∗(n)

� k(n) =
kλ(n)

λ + xT(n)kλ(n)

� ξ(n) = y(n)− hT(n − 1)x(n)

� P(n) =
1

λ

[

P(n − 1)− k(n)kH
λ (n)

]

�

h(n) = h(n − 1) + k(n)ξ(n)

+ γ
(λ − 1

λ

){

IN − k(n)xT(n)
}

P(n − 1)sgn
(

h(n − 1)
)
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ℓ1 regularized RLS (ℓ1-RLS) algorithm.
� inputs: λ, γ, x(n), y(n)

� initial values: h(−1) = 0, P(−1) = δ−1I

� for n := 0, 1, 2, . . .

� kλ(n) = P(n − 1)x∗(n)

� k(n) =
kλ(n)

λ + xT(n)kλ(n)

� ξ(n) = y(n)− hT(n − 1)x(n)

� P(n) =
1

λ

[

P(n − 1)− k(n)kH
λ (n)

]

�

h(n) = h(n − 1) + k(n)ξ(n)

+ γ
(λ − 1

λ

){

IN − k(n)xT(n)
}

P(n − 1)sgn
(

h(n − 1)
)

� endfor
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ℓ1-RLS Algorithm

� When we compare the ℓ1-RLS weight update with the
regular RLS update equation, we see that the last term
starting with γ

(

λ−1
λ

)

constitutes the difference from regular
RLS.
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� ℓ1-RLS presents convergence and steady-state error
improvements over the regular RLS algorithm.
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Simulation results

� In the second experiment we compare the performance of
the novel ℓ1-RLS algorithm to the regular RLS under
different SNR values.



ISSPA 2010, Malaysia RLS Adaptive Filtering with Sparsity Regularization - p.21

Simulation results

� In the second experiment we compare the performance of
the novel ℓ1-RLS algorithm to the regular RLS under
different SNR values.

0 50 100 150 200 250 300 350 400 450

10
−4

10
−3

10
−2

10
−1

10
0

iteration

M
S

E
 (

d
B

)

 

 

RLS, 10 dB

RLS, 20 dB

RLS, 30 dB

RLS, 40 dB

l
1
−RLS, 10 dB

l
1
−RLS, 20 dB

l
1
−RLS, 30 dB

l
1
−RLS, 40 dB

Figure 2: Learning curves for ℓ1-RLS and RLS for SNR=40, 30, 20 and 10 dB.
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Figure 2: Learning curves for ℓ1-RLS and RLS for SNR=40, 30, 20 and 10 dB.

� The ℓ1-RLS has better convergence and steady-state
properties than the regular RLS.



ISSPA 2010, Malaysia RLS Adaptive Filtering with Sparsity Regularization - p.22

Conclusions

� This paper introduced a new RLS algorithm, namely ℓ1-RLS,
applicable for the adaptive identification of systems with
sparse impulse response.
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Conclusions

� This paper introduced a new RLS algorithm, namely ℓ1-RLS,
applicable for the adaptive identification of systems with
sparse impulse response.

� The novel update equations for this algorithm are developed
by regularizing the cost function with an ℓ1 norm term.

� Numerical simulations demonstrate that the algorithm
indeed brings about better convergence and steady state
performance than regular RLS.

� Future work might include theoretical analysis for the steady
state error and simulations studying performance of the
proposed algorithm in the case of sparse, slowly
time-varying systems.



ISSPA 2010, Malaysia RLS Adaptive Filtering with Sparsity Regularization - p.23

Thanks



ISSPA 2010, Malaysia RLS Adaptive Filtering with Sparsity Regularization - p.23

Thanks

Thanks for listening.


	Main Headings
	Main Headings
	Main Headings
	Main Headings
	Main Headings

	Introduction
	Introduction
	Introduction

	Introduction
	Introduction
	Introduction

	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction

	Introduction
	Introduction
	Introduction
	Introduction

	1-RLS Algorithm
	1-RLS Algorithm
	1-RLS Algorithm

	1-RLS Algorithm
	1-RLS Algorithm
	1-RLS Algorithm
	1-RLS Algorithm

	1-RLS Algorithm
	1-RLS Algorithm
	1-RLS Algorithm

	1-RLS Algorithm
	1-RLS Algorithm
	1-RLS Algorithm
	1-RLS Algorithm

	1-RLS Algorithm
	1-RLS Algorithm

	1-RLS Algorithm
	1-RLS Algorithm
	1-RLS Algorithm

	1-RLS Algorithm
	1-RLS Algorithm
	1-RLS Algorithm
	1-RLS Algorithm
	1-RLS Algorithm
	1-RLS Algorithm

	1-RLS Algorithm
	1-RLS Algorithm
	1-RLS Algorithm

	1-RLS Algorithm
	1-RLS Algorithm

	1-RLS Algorithm
	1-RLS Algorithm
	1-RLS Algorithm

	1-RLS Algorithm
	1-RLS Algorithm
	1-RLS Algorithm
	1-RLS Algorithm
	1-RLS Algorithm
	1-RLS Algorithm
	1-RLS Algorithm
	1-RLS Algorithm
	1-RLS Algorithm
	1-RLS Algorithm

	1-RLS Algorithm
	Simulation results
	Simulation results

	Simulation results
	Simulation results
	Simulation results

	Simulation results
	Simulation results
	Simulation results

	Conclusions
	Conclusions
	Conclusions
	Conclusions

	Thanks
	Thanks


