Lattice-Ladder Structure For 2D ARMA Filters

Ender M. EKŞİOĞLU, M.Sc.
Istanbul Technical University
Electronics and Communications
Engineering Department

Main Headings

Main Headings

- Purpose

Main Headings

- Purpose

■ Introduction

Main Headings

- Purpose
- Introduction
- 2D Lattice-Ladder Model

Main Headings

- Purpose
- Introduction
- 2D Lattice-Ladder Model
- Calculation of Coefficients

Main Headings

- Purpose
- Introduction
- 2D Lattice-Ladder Model
- Calculation of Coefficients
- Concluding Remarks

Purpose

Purpose

- A novel lattice-ladder structure for the realization of 2D ARMA digital filters is presented.

Purpose

- A novel lattice-ladder structure for the realization of 2D ARMA digital filters is presented.
- The new realization is based on the 2D AR lattice filter.

Purpose

- A novel lattice-ladder structure for the realization of 2D ARMA digital filters is presented.
- The new realization is based on the 2D AR lattice filter.
- The algorithm to calculate the lattice-ladder structure coefficients for a given 2D ARMA transfer function is included.

Purpose

- A novel lattice-ladder structure for the realization of 2D ARMA digital filters is presented.
- The new realization is based on the 2D AR lattice filter.
- The algorithm to calculate the lattice-ladder structure coefficients for a given 2D ARMA transfer function is included.
- The 2D lattice-ladder structure has the properties of orthogonality and modularity as in the 1D case.

Purpose

- A novel lattice-ladder structure for the realization of 2D ARMA digital filters is presented.
- The new realization is based on the 2D AR lattice filter.
- The algorithm to calculate the lattice-ladder structure coefficients for a given 2D ARMA transfer function is included.
- The 2D lattice-ladder structure has the properties of orthogonality and modularity as in the 1D case.
- The lattice-ladder structure might prove useful in 2D adaptive filtering applications.

Introduction

Introduction

- ARMA or pole-zero digital filters can provide parsimonious yet efficient system models.

Introduction

- ARMA or pole-zero digital filters can provide parsimonious yet efficient system models.
- 1D ARMA lattice-ladder structures have found applications in adaptive filtering and speech processing.

Introduction

- ARMA or pole-zero digital filters can provide parsimonious yet efficient system models.
- 1D ARMA lattice-ladder structures have found applications in adaptive filtering and speech processing.
- The 1D ARMA lattice-ladder structure consists of an all-pole lattice section realizing the AR part of the system and the all-zero ladder section providing the MA part .

Introduction

- ARMA or pole-zero digital filters can provide parsimonious yet efficient system models.
- 1D ARMA lattice-ladder structures have found applications in adaptive filtering and speech processing.
- The 1D ARMA lattice-ladder structure consists of an all-pole lattice section realizing the AR part of the system and the all-zero ladder section providing the MA part .
- In the literature there is yet no compatible lattice-ladder structure for 2D ARMA digital filters.

Introduction

- We develop a new lattice-ladder structure for the realization of 2D ARMA digital filters.

Introduction

- We develop a new lattice-ladder structure for the realization of 2D ARMA digital filters.
- This structure utilizes a 2D AR lattice model as the backbone and adds a ladder section to this 2D AR model to create the full ARMA structure.

Introduction

- We develop a new lattice-ladder structure for the realization of 2D ARMA digital filters.
- This structure utilizes a 2D AR lattice model as the backbone and adds a ladder section to this 2D AR model to create the full ARMA structure.
- This model eliminates any redundancy from the lattice reflection coefficients.

Introduction

- We develop a new lattice-ladder structure for the realization of 2D ARMA digital filters.
- This structure utilizes a 2D AR lattice model as the backbone and adds a ladder section to this 2D AR model to create the full ARMA structure.
- This model eliminates any redundancy from the lattice reflection coefficients.
- A recursive algorithm to calculate the lattice-ladder coefficients for any given 2D ARMA transfer function is also presented.

Introduction

- We develop a new lattice-ladder structure for the realization of 2D ARMA digital filters.
- This structure utilizes a 2D AR lattice model as the backbone and adds a ladder section to this 2D AR model to create the full ARMA structure.
- This model eliminates any redundancy from the lattice reflection coefficients.
- A recursive algorithm to calculate the lattice-ladder coefficients for any given 2D ARMA transfer function is also presented.
- The 2D lattice-ladder structure maintains the orthogonality of prediction errors and modularity properties of its 1D counterpart.

2D Lattice-Ladder Model

2D Lattice-Ladder Model

- The system function for the 2D ARMA pole-zero model is given as follows:

2D Lattice-Ladder Model

- The system function for the 2D ARMA pole-zero model is given as follows:

$$
\begin{align*}
& H\left(z_{1}, z_{2}\right)=\frac{Y\left(z_{1}, z_{2}\right)}{X\left(z_{1}, z_{2}\right)}=\frac{B\left(z_{1}, z_{2}\right)}{A\left(z_{1}, z_{2}\right)} \\
& \quad=\frac{\sum_{\left(n_{1}, n_{2}\right) \in \mathscr{R}} \sum_{\left(n_{1}, n_{2}\right) \in \mathscr{R}-(0,0)} b\left(n_{1}, n_{2}\right) z_{1}^{-n_{1}} z_{2}^{-n_{2}}}{\left.1+\sum_{1} \sum_{1}, n_{2}\right) z_{1}^{-n_{1}} z_{2}^{-n_{2}}} \tag{1}
\end{align*}
$$

2D Lattice-Ladder Model

- The system function for the 2D ARMA pole-zero model is given as follows:

$$
\begin{align*}
& H\left(z_{1}, z_{2}\right)=\frac{Y\left(z_{1}, z_{2}\right)}{X\left(z_{1}, z_{2}\right)}=\frac{B\left(z_{1}, z_{2}\right)}{A\left(z_{1}, z_{2}\right)} \\
& \quad=\frac{\sum_{\left(n_{1}, n_{2}\right) \in \mathscr{R}} \sum_{\left(n_{1}, n_{2}\right) \in \mathscr{R}-(0,0)} b\left(n_{1}, n_{2}\right) z_{1}^{-n_{1}} z_{2}^{-n_{2}}}{\left.1+\sum_{1} \sum_{1}, n_{2}\right) z_{1}^{-n_{1}} z_{2}^{-n_{2}}} \tag{1}
\end{align*}
$$

- Here, \mathscr{R} denotes the 2D region of support for the numerator and denominator polynomial parameters.

2D Lattice-Ladder Model

- The system function for the 2D ARMA pole-zero model is given as follows:

$$
\begin{align*}
& H\left(z_{1}, z_{2}\right)=\frac{Y\left(z_{1}, z_{2}\right)}{X\left(z_{1}, z_{2}\right)}=\frac{B\left(z_{1}, z_{2}\right)}{A\left(z_{1}, z_{2}\right)} \\
& \quad=\frac{\sum_{\left(n_{1}, n_{2}\right) \in \mathscr{R}} b\left(n_{1}, n_{2}\right) z_{1}^{-n_{1}} z_{2}^{-n_{2}}}{1+\sum_{\left(n_{1}, n_{2}\right) \in \mathscr{R}-(0,0)} a\left(n_{1}, n_{2}\right) z_{1}^{-n_{1}} z_{2}^{-n_{2}}} \tag{1}
\end{align*}
$$

- Here, \mathscr{R} denotes the 2D region of support for the numerator and denominator polynomial parameters.
- We assume that the support for both polynomials is the same.

2D Lattice-Ladder Model

- In Kayran (1996), a 2D orthogonal lattice structure for 2D AR models has been presented.

2D Lattice-Ladder Model

- In Kayran (1996), a 2D orthogonal lattice structure for 2D AR models has been presented.
- This model simultaneously creates the orthogonal backward prediction errors corresponding to the 2D AR system model.

2D Lattice-Ladder Model

- In Kayran (1996), a 2D orthogonal lattice structure for 2D AR models has been presented.
- This model simultaneously creates the orthogonal backward prediction errors corresponding to the 2D AR system model.
- A Levinson-type recursion to compute the 2D lattice filter reflection coefficients for a given 2D AR transfer function was also developed in Kayran (1996).

2D Lattice-Ladder Model

- In Kayran (1996), a 2D orthogonal lattice structure for 2D AR models has been presented.
- This model simultaneously creates the orthogonal backward prediction errors corresponding to the 2D AR system model.
- A Levinson-type recursion to compute the 2D lattice filter reflection coefficients for a given 2D AR transfer function was also developed in Kayran (1996).
- We present a novel structure for 2D ARMA filters by adding a ladder section to this 2D AR model.

Figure

Figure 1: Lattice-ladder structure; a) Lattice-ladder structure for 2D ARMA filter, b) Ordering scheme in the support region

2D Lattice-Ladder Model

- In Fig. 1,

2D Lattice-Ladder Model

- In Fig. 1,
- the lattice section realizes the AR part of the transfer function $\left(1 / A\left(z_{1}, z_{2}\right)\right)$,

2D Lattice-Ladder Model

- In Fig. 1,
- the lattice section realizes the AR part of the transfer function $\left(1 / A\left(z_{1}, z_{2}\right)\right)$,
- whereas the ladder section realizes the MA part $\left(B\left(z_{1}, z_{2}\right)\right)$.

2D Lattice-Ladder Model

- In Fig. 1,
- the lattice section realizes the AR part of the transfer function $\left(1 / A\left(z_{1}, z_{2}\right)\right)$,
- whereas the ladder section realizes the MA part $\left(B\left(z_{1}, z_{2}\right)\right)$.
- The output of the overall ARMA system is formed by taking a weighted linear combination of the backward prediction errors, $b_{p}^{(p)}\left(n_{1}, n_{2}\right)$.

2D Lattice-Ladder Model

- In Fig. 1,
- the lattice section realizes the AR part of the transfer function $\left(1 / A\left(z_{1}, z_{2}\right)\right)$,
- whereas the ladder section realizes the MA part $\left(B\left(z_{1}, z_{2}\right)\right)$.
- The output of the overall ARMA system is formed by taking a weighted linear combination of the backward prediction errors, $b_{p}^{(p)}\left(n_{1}, n_{2}\right)$.

$$
\begin{equation*}
y\left(n_{1}, n_{2}\right)=\sum_{p=0}^{M} c_{p} b_{p}^{(p)}\left(n_{1}, n_{2}\right) \tag{2}
\end{equation*}
$$

2D Lattice-Ladder Model - Figure

Figure 2: Internal structure of the FIR lattice module

Calculation of Coefficients

Calculation of Coefficients

- We derive the algorithm to calculate the lattice and ladder coefficients necessary for the lattice-ladder realization of a given ARMA transfer function,

Calculation of Coefficients

- We derive the algorithm to calculate the lattice and ladder coefficients necessary for the lattice-ladder realization of a given ARMA transfer function,

$$
\begin{equation*}
H\left(z_{1}, z_{2}\right)=\frac{B\left(z_{1}, z_{2}\right)}{A\left(z_{1}, z_{2}\right)} \tag{3}
\end{equation*}
$$

Calculation of Coefficients

- In Kayran (1996), a Levinson-type recursion to compute the reflection coefficients $\Gamma_{f_{p-n}}^{(n)}$ and $\Gamma_{b_{p}}^{(n)}$ is outlined. These lattice reflection coefficients realize the given AR transfer function.

Calculation of Coefficients

- In Kayran (1996), a Levinson-type recursion to compute the reflection coefficients $\Gamma_{f_{p-n}}^{(n)}$ and $\Gamma_{b_{p}}^{(n)}$ is outlined. These lattice reflection coefficients realize the given AR transfer function.

$$
\begin{equation*}
H_{\mathrm{AR}}\left(z_{1}, z_{2}\right)=\frac{1}{A\left(z_{1}, z_{2}\right)}=\frac{B_{0}^{(0)}\left(z_{1}, z_{2}\right)}{X\left(z_{1}, z_{2}\right)} \tag{4}
\end{equation*}
$$

Calculation of Coefficients

- In Kayran (1996), a Levinson-type recursion to compute the reflection coefficients $\Gamma_{f_{p-n}}^{(n)}$ and $\Gamma_{b_{p}}^{(n)}$ is outlined. These lattice reflection coefficients realize the given AR transfer function.

$$
\begin{equation*}
H_{\mathrm{AR}}\left(z_{1}, z_{2}\right)=\frac{1}{A\left(z_{1}, z_{2}\right)}=\frac{B_{0}^{(0)}\left(z_{1}, z_{2}\right)}{X\left(z_{1}, z_{2}\right)} \tag{4}
\end{equation*}
$$

- We assume that the reflection coefficients for the lattice part are already determined.

Calculation of Coefficients

- It is now necessary to calculate the ladder coefficients c_{p}, which will realize the MA part of the transfer function,

Calculation of Coefficients

- It is now necessary to calculate the ladder coefficients c_{p}, which will realize the MA part of the transfer function,

$$
\begin{equation*}
H_{\mathrm{MA}}\left(z_{1}, z_{2}\right)=B\left(z_{1}, z_{2}\right)=\frac{Y\left(z_{1}, z_{2}\right)}{B_{0}^{(0)}\left(z_{1}, z_{2}\right)} \tag{5}
\end{equation*}
$$

Calculation of Coefficients

- It is now necessary to calculate the ladder coefficients c_{p}, which will realize the MA part of the transfer function,

$$
\begin{equation*}
H_{\mathrm{MA}}\left(z_{1}, z_{2}\right)=B\left(z_{1}, z_{2}\right)=\frac{Y\left(z_{1}, z_{2}\right)}{B_{0}^{(0)}\left(z_{1}, z_{2}\right)} \tag{5}
\end{equation*}
$$

- We need some definitions to this end.

Calculation of Coefficients

- The backward prediction error transfer function $\left(G_{p}^{(p)}\left(z_{1}, z_{2}\right)\right)$ is defined as the transfer function between the input of the MA section (i.e. $\left.b_{0}^{(0)}\left(n_{1}, n_{2}\right)\right)$, and the backward prediction error $\left(b_{p}^{(p)}\left(n_{1}, n_{2}\right)\right)$:

Calculation of Coefficients

- The backward prediction error transfer function $\left(G_{p}^{(p)}\left(z_{1}, z_{2}\right)\right)$ is defined as the transfer function between the input of the MA section (i.e. $\left.b_{0}^{(0)}\left(n_{1}, n_{2}\right)\right)$, and the backward prediction error $\left(b_{p}^{(p)}\left(n_{1}, n_{2}\right)\right)$:

$$
\begin{align*}
G_{p}^{(p)}\left(z_{1}, z_{2}\right) & =\frac{B_{p}^{(p)}\left(z_{1}, z_{2}\right)}{B_{0}^{(0)}\left(z_{1}, z_{2}\right)} \tag{6}\\
& =\sum_{\left(n_{1}, n_{2}\right) \in \mathscr{R}} \sum_{p} g_{p}^{(p)}\left(n_{1}, n_{2}\right) z_{1}^{-n_{1}} z_{2}^{-n_{2}}
\end{align*}
$$

Calculation of Coefficients

- These backward prediction error transfer functions can be calculated using the step-up recursion formula in Kayran (1996) and the lattice reflection coefficients.

Calculation of Coefficients

- These backward prediction error transfer functions can be calculated using the step-up recursion formula in Kayran (1996) and the lattice reflection coefficients.
- The coefficients for the backward prediction error transfer functions in (6) are defined as $g_{p}^{(p)}\left(n_{1}, n_{2}\right),\left(n_{1}, n_{2}\right) \in \mathscr{R}$.

Calculation of Coefficients

- We will also define the following transfer functions $D_{m}\left(z_{1}, z_{2}\right)$, for $m=0,1, \ldots, M$.

Calculation of Coefficients

- We will also define the following transfer functions $D_{m}\left(z_{1}, z_{2}\right)$, for $m=0,1, \ldots, M$.

$$
\begin{align*}
D_{m}\left(z_{1}, z_{2}\right) & =\sum_{p=0}^{m} c_{p} G_{p}^{(p)}\left(z_{1}, z_{2}\right) \tag{7}\\
& =\sum_{\left(n_{1}, n_{2}\right) \in \mathscr{R}} \sum_{m} d_{m}\left(n_{1}, n_{2}\right) z_{1}^{-n_{1}} z_{2}^{-n_{2}}
\end{align*}
$$

Calculation of Coefficients

- We will also define the following transfer functions $D_{m}\left(z_{1}, z_{2}\right)$, for $m=0,1, \ldots, M$.

$$
\begin{align*}
D_{m}\left(z_{1}, z_{2}\right) & =\sum_{p=0}^{m} c_{p} G_{p}^{(p)}\left(z_{1}, z_{2}\right) \tag{7}\\
& =\sum_{\left(n_{1}, n_{2}\right) \in \mathscr{R}} d_{m}\left(n_{1}, n_{2}\right) z_{1}^{-n_{1}} z_{2}^{-n_{2}}
\end{align*}
$$

- $D_{m}\left(z_{1}, z_{2}\right)$ can be computed recursively from the backward prediction error transfer functions.

Calculation of Coefficients

- We will also define the following transfer functions $D_{m}\left(z_{1}, z_{2}\right)$, for $m=0,1, \ldots, M$.

$$
\begin{align*}
D_{m}\left(z_{1}, z_{2}\right) & =\sum_{p=0}^{m} c_{p} G_{p}^{(p)}\left(z_{1}, z_{2}\right) \tag{7}\\
& =\sum_{\left(n_{1}, n_{2}\right) \in \mathscr{R}} \sum_{m}\left(n_{1}, n_{2}\right) z_{1}^{-n_{1}} z_{2}^{-n_{2}}
\end{align*}
$$

- $D_{m}\left(z_{1}, z_{2}\right)$ can be computed recursively from the backward prediction error transfer functions.

$$
\begin{equation*}
D_{m}\left(z_{1}, z_{2}\right)=D_{m-1}\left(z_{1}, z_{2}\right)+c_{m} G_{m}^{(m)}\left(z_{1}, z_{2}\right) \tag{8}
\end{equation*}
$$

Calculation of Coefficients

- The coefficients of the defined 2D transfer functions can be reordered into one-dimensional vectors.

Calculation of Coefficients

- The coefficients of the defined 2D transfer functions can be reordered into one-dimensional vectors.
- We define the one-dimensional coefficient vector for $g_{p}^{(p)}\left(n_{1}, n_{2}\right)$ as $\mathbf{g}_{p}^{(p)}$, the coefficient vector for $d_{m}\left(n_{1}, n_{2}\right)$ as \mathbf{d}_{m} and the coefficient vector for $b\left(n_{1}, n_{2}\right)$ as \mathbf{b}.

Calculation of Coefficients

- The coefficients of the defined 2D transfer functions can be reordered into one-dimensional vectors.
- We define the one-dimensional coefficient vector for $g_{p}^{(p)}\left(n_{1}, n_{2}\right)$ as $\mathbf{g}_{p}^{(p)}$, the coefficient vector for $d_{m}\left(n_{1}, n_{2}\right)$ as \mathbf{d}_{m} and the coefficient vector for $b\left(n_{1}, n_{2}\right)$ as \mathbf{b}.
- After these definitions, (8) can be rewritten as,

Calculation of Coefficients

- The coefficients of the defined 2D transfer functions can be reordered into one-dimensional vectors.
- We define the one-dimensional coefficient vector for $g_{p}^{(p)}\left(n_{1}, n_{2}\right)$ as $\mathbf{g}_{p}^{(p)}$, the coefficient vector for $d_{m}\left(n_{1}, n_{2}\right)$ as \mathbf{d}_{m} and the coefficient vector for $b\left(n_{1}, n_{2}\right)$ as \mathbf{b}.
- After these definitions, (8) can be rewritten as,

$$
\begin{equation*}
\mathbf{d}_{m-1}=\mathbf{d}_{m}-c_{m} \mathbf{g}_{m}^{(m)} \tag{9}
\end{equation*}
$$

Calculation of Coefficients

- The coefficients of the defined 2D transfer functions can be reordered into one-dimensional vectors.
- We define the one-dimensional coefficient vector for $g_{p}^{(p)}\left(n_{1}, n_{2}\right)$ as $\mathbf{g}_{p}^{(p)}$, the coefficient vector for $d_{m}\left(n_{1}, n_{2}\right)$ as \mathbf{d}_{m} and the coefficient vector for $b\left(n_{1}, n_{2}\right)$ as \mathbf{b}.
- After these definitions, (8) can be rewritten as,

$$
\begin{equation*}
\mathbf{d}_{m-1}=\mathbf{d}_{m}-c_{m} \mathbf{g}_{m}^{(m)} \tag{9}
\end{equation*}
$$

- Using these definitions, the recursive algorithm for the calculation of the ladder coefficients is developed.

Algorithm

Algorithm

- The 2D transfer function is given.

$$
H\left(z_{1}, z_{2}\right)=\frac{B\left(z_{1}, z_{2}\right)}{A\left(z_{1}, z_{2}\right)}
$$

Algorithm

- The 2D transfer function is given.
$H\left(z_{1}, z_{2}\right)=\frac{B\left(z_{1}, z_{2}\right)}{A\left(z_{1}, z_{2}\right)}$
- Find the lattice reflection coefficients $\Gamma_{f_{p-n}}^{(n)}$ and $\Gamma_{b_{p}}^{(n)}$ for $1 / A\left(z_{1}, z_{2}\right)$

Algorithm

- The 2D transfer function is given.
$H\left(z_{1}, z_{2}\right)=\frac{B\left(z_{1}, z_{2}\right)}{A\left(z_{1}, z_{2}\right)}$
- Find the lattice reflection coefficients $\Gamma_{f_{p-n}}^{(n)}$ and $\Gamma_{b_{p}}^{(n)}$ for $1 / A\left(z_{1}, z_{2}\right)$
- Calculate backward prediction error transfer functions $G_{p}^{(p)}\left(z_{1}, z_{2}\right)$ (i.e. $\left.\mathbf{g}_{p}^{(p)}\right)$, for $p=0,1, \ldots, M$.

Algorithm

- The 2D transfer function is given.
$H\left(z_{1}, z_{2}\right)=\frac{B\left(z_{1}, z_{2}\right)}{A\left(z_{1}, z_{2}\right)}$
- Find the lattice reflection coefficients $\Gamma_{f_{p-n}}^{(n)}$ and $\Gamma_{b_{p}}^{(n)}$ for $1 / A\left(z_{1}, z_{2}\right)$
- Calculate backward prediction error transfer functions $G_{p}^{(p)}\left(z_{1}, z_{2}\right)$ (i.e. $\mathbf{g}_{p}^{(p)}$), for $p=0,1, \ldots, M$.
- Recursive algorithm for the calculation of the ladder coefficients:

Algorithm

- The 2D transfer function is given.
$H\left(z_{1}, z_{2}\right)=\frac{B\left(z_{1}, z_{2}\right)}{A\left(z_{1}, z_{2}\right)}$
- Find the lattice reflection coefficients $\Gamma_{f_{p-n}}^{(n)}$ and $\Gamma_{b_{p}}^{(n)}$ for $1 / A\left(z_{1}, z_{2}\right)$
- Calculate backward prediction error transfer functions $G_{p}^{(p)}\left(z_{1}, z_{2}\right)$ (i.e. $\left.\mathbf{g}_{p}^{(p)}\right)$, for $p=0,1, \ldots, M$.
- Recursive algorithm for the calculation of the ladder coefficients:
- Initialization:

$$
D_{M}\left(z_{1}, z_{2}\right)=B\left(z_{1}, z_{2}\right) \Longrightarrow \mathbf{d}_{M}=\mathbf{b}
$$

Algorithm

- The 2D transfer function is given.
$H\left(z_{1}, z_{2}\right)=\frac{B\left(z_{1}, z_{2}\right)}{A\left(z_{1}, z_{2}\right)}$
- Find the lattice reflection coefficients $\Gamma_{f_{p-n}}^{(n)}$ and $\Gamma_{b_{p}}^{(n)}$ for $1 / A\left(z_{1}, z_{2}\right)$
- Calculate backward prediction error transfer functions $G_{p}^{(p)}\left(z_{1}, z_{2}\right)$ (i.e. $\mathbf{g}_{p}^{(p)}$), for $p=0,1, \ldots, M$.
- Recursive algorithm for the calculation of the ladder coefficients:
- Initialization:

$$
D_{M}\left(z_{1}, z_{2}\right)=B\left(z_{1}, z_{2}\right) \Longrightarrow \mathbf{d}_{M}=\mathbf{b}
$$

- for $p=M: 0$

Algorithm

- The 2D transfer function is given.
$H\left(z_{1}, z_{2}\right)=\frac{B\left(z_{1}, z_{2}\right)}{A\left(z_{1}, z_{2}\right)}$
- Find the lattice reflection coefficients $\Gamma_{f_{p-n}}^{(n)}$ and $\Gamma_{b_{p}}^{(n)}$ for $1 / A\left(z_{1}, z_{2}\right)$
- Calculate backward prediction error transfer functions $G_{p}^{(p)}\left(z_{1}, z_{2}\right)$ (i.e. $\mathbf{g}_{p}^{(p)}$), for $p=0,1, \ldots, M$.
- Recursive algorithm for the calculation of the ladder coefficients:
- Initialization:

$$
D_{M}\left(z_{1}, z_{2}\right)=B\left(z_{1}, z_{2}\right) \Longrightarrow \mathbf{d}_{M}=\mathbf{b}
$$

- for $p=M: 0$
- $c_{p}=\mathbf{d}_{p}(p+1)$

Algorithm

- The 2D transfer function is given.
$H\left(z_{1}, z_{2}\right)=\frac{B\left(z_{1}, z_{2}\right)}{A\left(z_{1}, z_{2}\right)}$
- Find the lattice reflection coefficients $\Gamma_{f_{p-n}}^{(n)}$ and $\Gamma_{b_{p}}^{(n)}$ for $1 / A\left(z_{1}, z_{2}\right)$
- Calculate backward prediction error transfer functions $G_{p}^{(p)}\left(z_{1}, z_{2}\right)$ (i.e. $\mathbf{g}_{p}^{(p)}$), for $p=0,1, \ldots, M$.
- Recursive algorithm for the calculation of the ladder coefficients:
- Initialization:

$$
D_{M}\left(z_{1}, z_{2}\right)=B\left(z_{1}, z_{2}\right) \Longrightarrow \mathbf{d}_{M}=\mathbf{b}
$$

- for $p=M: 0$
- $c_{p}=\mathbf{d}_{p}(p+1)$

Algorithm

- The 2D transfer function is given.
$H\left(z_{1}, z_{2}\right)=\frac{B\left(z_{1}, z_{2}\right)}{A\left(z_{1}, z_{2}\right)}$
- Find the lattice reflection coefficients $\Gamma_{f_{p-n}}^{(n)}$ and $\Gamma_{b_{p}}^{(n)}$ for $1 / A\left(z_{1}, z_{2}\right)$
- Calculate backward prediction error transfer functions $G_{p}^{(p)}\left(z_{1}, z_{2}\right)$ (i.e. $\mathbf{g}_{p}^{(p)}$), for $p=0,1, \ldots, M$.
- Recursive algorithm for the calculation of the ladder coefficients:
- Initialization:

$$
D_{M}\left(z_{1}, z_{2}\right)=B\left(z_{1}, z_{2}\right) \Longrightarrow \mathbf{d}_{M}=\mathbf{b}
$$

- for $p=M: 0$
- $c_{p}=\mathbf{d}_{p}(p+1)$

Conclusions

Conclusions

- This paper has proposed a novel 2D ARMA lattice-ladder structure.

Conclusions

- This paper has proposed a novel 2D ARMA lattice-ladder structure.
- The 2D lattice-ladder structure employs linear regression on the backward prediction errors generated by the 2D lattice section.

Conclusions

- This paper has proposed a novel 2D ARMA lattice-ladder structure.
- The 2D lattice-ladder structure employs linear regression on the backward prediction errors generated by the 2D lattice section.
- To the best of our knowledge this is the first successful attempt at 2D lattice-ladder filtering.

Conclusions

- This paper has proposed a novel 2D ARMA lattice-ladder structure.
- The 2D lattice-ladder structure employs linear regression on the backward prediction errors generated by the 2D lattice section.
- To the best of our knowledge this is the first successful attempt at 2D lattice-ladder filtering.
- The 2D lattice-ladder structure maintains the orthogonality and modularity properties of its well-known 1D counterpart.

Conclusions

- This paper has proposed a novel 2D ARMA lattice-ladder structure.
- The 2D lattice-ladder structure employs linear regression on the backward prediction errors generated by the 2D lattice section.
- To the best of our knowledge this is the first successful attempt at 2D lattice-ladder filtering.
- The 2D lattice-ladder structure maintains the orthogonality and modularity properties of its well-known 1D counterpart.
- 2D adaptive filtering applications and comparison with existing structures will be a subject of further study.

Thanks for your kind attention.

References

Kayran, A. H., 1996. Two-dimensional orthogonal lattice structures for autoregressive modeling of random fields, IEEE Trans. Signal Processing, 44(4), 963-978.

