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Purpose

� A novel lattice-ladder structure for the realization of 2D
ARMA digital filters is presented.

� The new realization is based on the 2D AR lattice filter.
� The algorithm to calculate the lattice-ladder structure

coefficients for a given 2D ARMA transfer function is included.
� The 2D lattice-ladder structure has the properties of

orthogonality and modularity as in the 1D case.
� The lattice-ladder structure might prove useful in 2D adaptive

filtering applications.
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Introduction

� ARMA or pole-zero digital filters can provide parsimonious
yet efficient system models.

� 1D ARMA lattice-ladder structures have found applications in
adaptive filtering and speech processing.

� The 1D ARMA lattice-ladder structure consists of an all-pole
lattice section realizing the AR part of the system and the
all-zero ladder section providing the MA part .

� In the literature there is yet no compatible lattice-ladder
structure for 2D ARMA digital filters.
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Introduction

� We develop a new lattice-ladder structure for the realization of
2D ARMA digital filters.

� This structure utilizes a 2D AR lattice model as the backbone
and adds a ladder section to this 2D AR model to create the
full ARMA structure.

� This model eliminates any redundancy from the lattice
reflection coefficients.

� A recursive algorithm to calculate the lattice-ladder
coefficients for any given 2D ARMA transfer function is also
presented.

� The 2D lattice-ladder structure maintains the orthogonality of
prediction errors and modularity properties of its 1D
counterpart.
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2D Lattice-Ladder Model

� The system function for the 2D ARMA pole-zero model is
given as follows:

H(z1,z2) =
Y (z1, z2)

X(z1, z2)
=

B(z1, z2)

A(z1, z2)

=

∑∑

(n1,n2)∈R

b(n1, n2)z
−n1

1 z−n2

2

1 +
∑ ∑

(n1,n2)∈R−(0,0)

a(n1, n2)z
−n1

1 z−n2

2

(1)

� Here, R denotes the 2D region of support for the numerator
and denominator polynomial parameters.

� We assume that the support for both polynomials is the same.
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2D Lattice-Ladder Model

� In Kayran (1996), a 2D orthogonal lattice structure for 2D AR
models has been presented.

� This model simultaneously creates the orthogonal backward
prediction errors corresponding to the 2D AR system model.

� A Levinson-type recursion to compute the 2D lattice filter
reflection coefficients for a given 2D AR transfer function was
also developed in Kayran (1996).

� We present a novel structure for 2D ARMA filters by adding a
ladder section to this 2D AR model.
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Figure
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Figure 1: Lattice-ladder structure; a) Lattice-ladder structure for 2D ARMA filter, b) Ordering
scheme in the support region
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2D Lattice-Ladder Model

� In Fig. 1,

� the lattice section realizes the AR part of the transfer
function

(

1/A(z1, z2)
)

,
� whereas the ladder section realizes the MA part

(

B(z1, z2)
)

.
� The output of the overall ARMA system is formed by taking a

weighted linear combination of the backward prediction
errors, b

(p)
p (n1, n2).

y(n1, n2) =
M
∑

p=0

cp b(p)
p (n1, n2) (2)
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2D Lattice-Ladder Model - Figure
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Figure 2: Internal structure of the FIR lattice module
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Calculation of Coefficients

� We derive the algorithm to calculate the lattice and ladder
coefficients necessary for the lattice-ladder realization of a
given ARMA transfer function,

H(z1, z2) =
B(z1, z2)

A(z1, z2)
(3)
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Calculation of Coefficients

� In Kayran (1996), a Levinson-type recursion to compute the
reflection coefficients Γ

(n)
fp−n

and Γ
(n)
bp

is outlined. These lattice
reflection coefficients realize the given AR transfer function.

HAR(z1, z2) =
1

A(z1, z2)
=

B
(0)
0 (z1, z2)

X(z1, z2)
(4)

� We assume that the reflection coefficients for the lattice part
are already determined.
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Calculation of Coefficients

� It is now necessary to calculate the ladder coefficients cp,
which will realize the MA part of the transfer function,

HMA(z1, z2) = B(z1, z2) =
Y (z1, z2)

B
(0)
0 (z1, z2)

(5)

� We need some definitions to this end.
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Calculation of Coefficients

� The backward prediction error transfer function
(

G
(p)
p (z1, z2)

)

is defined as the transfer function between the input of the MA
section

(

i.e. b
(0)
0 (n1, n2)

)

, and the backward prediction error
(

b
(p)
p (n1, n2)

)

:

G(p)
p (z1, z2) =

B
(p)
p (z1, z2)

B
(0)
0 (z1, z2)

=
∑ ∑

(n1,n2)∈R

g(p)
p (n1, n2) z−n1

1 z−n2

2

(6)
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Calculation of Coefficients

� These backward prediction error transfer functions can be
calculated using the step-up recursion formula in Kayran
(1996) and the lattice reflection coefficients.

� The coefficients for the backward prediction error transfer
functions in (6) are defined as g

(p)
p (n1, n2), (n1, n2) ∈ R.
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Calculation of Coefficients

� We will also define the following transfer functions Dm(z1, z2),
for m = 0, 1, . . . , M .

Dm(z1, z2) =
m

∑

p=0

cp G(p)
p (z1, z2)

=
∑ ∑

(n1,n2)∈R

dm(n1, n2) z−n1

1 z−n2

2

(7)

� Dm(z1, z2) can be computed recursively from the backward
prediction error transfer functions.

Dm(z1, z2) = Dm−1(z1, z2) + cmG(m)
m (z1, z2) (8)
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Calculation of Coefficients

� The coefficients of the defined 2D transfer functions can be
reordered into one-dimensional vectors.

� We define the one-dimensional coefficient vector for
g
(p)
p (n1, n2) as g

(p)
p , the coefficient vector for dm(n1, n2) as dm

and the coefficient vector for b(n1, n2) as b.
� After these definitions, (8) can be rewritten as,

dm−1 = dm − cm g(m)
m (9)

� Using these definitions, the recursive algorithm for the
calculation of the ladder coefficients is developed.
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Algorithm

� The 2D transfer function is given.

H(z1, z2) =
B(z1, z2)

A(z1, z2)

� Find the lattice reflection coefficients Γ
(n)
fp−n

and Γ
(n)
bp

for
1/A(z1, z2)

� Calculate backward prediction error transfer functions
G

(p)
p (z1, z2) (i.e. g

(p)
p ), for p = 0, 1, . . . , M .

� Recursive algorithm for the calculation of the ladder
coefficients:
� Initialization:

DM (z1, z2) = B(z1, z2) =⇒ dM = b

� for p = M : 0
• cp = dp(p + 1)

• dp−1 = dp − cp g
(p)
p

� endfor
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Conclusions

� This paper has proposed a novel 2D ARMA lattice-ladder
structure.

� The 2D lattice-ladder structure employs linear regression on
the backward prediction errors generated by the 2D lattice
section.

� To the best of our knowledge this is the first successful attempt
at 2D lattice-ladder filtering.

� The 2D lattice-ladder structure maintains the orthogonality
and modularity properties of its well-known 1D counterpart.

� 2D adaptive filtering applications and comparison with
existing structures will be a subject of further study.
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Thanks for your kind attention.
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