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The Problem
The Novel Approach

Sparse MRI

Active research area: Use sparsity as a regularizer for
ill-conditioned inverse problems.
Sparse regularization (and compressed sensing (CS))
have been applied to image reconstruction in Magnetic
Resonance Imaging (MRI) (our problem of interest).
Pioneering work [Lustig et.al., 2007], Sparse MRI: sparsely
regularize the MRI reconstruction problem.

min
x

1
2‖Fux − y‖22 + ρ1‖Φx‖1 + ρ2‖x‖TV. (1)
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Sparse MRI

min
x

1
2‖Fux − y‖22 + ρ1‖Φx‖1 + ρ2‖x‖TV.

x ∈ CN is the reconstructed MR image in vectorized form.
Fu is the undersampled Fourier transform operator:
conversion from the vectorized image to the k-space.
y = Fux? + η ∈ Cκ is the observation vector in the
k-space.
x? is the true underlying image and η is the additive noise.
The ratio κ/N quantifies the undersampling.
‖·‖1 denotes the `1 norm.
Φ is a sparsifying operator: we will assume it to be a
square wavelet transform.
‖·‖TV is the Total Variation (TV) norm.
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Patch based regularization methods

Examplar or patch based methods have been very popular
for sparsity based image processing.
Dictionary learning (DL) based synthesis sparsity methods
Analysis sparsity based analysis operator learning
methods
Novel model for analysis operator learning, called as
sparsifying Transform Learning (TL) [Ravishankar and
Bresler, 2013].
TL has been utilized to regularize the MRI reconstruction
problem, resulting in the TLMRI algorithm.
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Patch based regularization methods

Methods such as Sparse MRI, RecPF and FCSA apply
global, image-scale regularization
TLMRI or DL based algorithms utilize local, patch-scale
regularization
In this work, we aim to bring these two ends together.
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New Method: Globally regularized TLMRI
G-TLMRI

We introduce a global sparsifying cost into TLMRI, and
provide the algorithm.
We will denote this modified framework as the Globally
regularized TLMRI (G-TLMRI).
Simulation results: use of global and local regularization
terms together results in superior reconstruction
performance.
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From the Literature: Transform Learning MRI
TLMRI

TL has been applied to MRI image reconstruction.
TLMRI cost function can be stated as follows.

(P0) min
W ,X̂ ,A,x

‖W X̂ −A‖2F + λQ(W ) + τ‖R(x)− X̂‖2F

+ η‖Fux − y‖22 , s.t. ‖αj‖0 ≤ sj ∀j = 1 . . .M. (2)
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‖·‖F is the Frobenius matrix norm.
‖·‖0 denotes the `0 pseudo-norm.
W ∈ Cn×n is the learned square transform.
X̂ ∈ Cn×M , and its columns x̂ j ∈ Cn denote vectorized 2D
patches of size

√
n ×
√

n.
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New cost function with global regularizer.

(P1) min
W ,X̂ ,A,x

‖W X̂ −A‖2F + λQ(W ) + β‖A‖1

+ τ‖R(x)− X̂‖2F + η‖Fux − y‖22 + υ′‖Φx‖1. (3)
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introduction of the ‖Φx‖1 term.
We will denote this modified framework as the Globally
regularized TLMRI (G-TLMRI).

Tanc and Eksioglu - EUSIPCO 2015 Transform Learning MRI with Global Wavelet Regularization



Introduction
Transform Learning MRI

GTLMRI
Simulations and Conclusion

New Cost
GTLMRI: Denoising
GTLMRI: Reconstruction
GTLMRI: Overall Algorithm

New Method: GTLMRI

(P1) min
W ,X̂ ,A,x

‖W X̂ −A‖2F + λQ(W ) + β‖A‖1

+ τ‖R(x)− X̂‖2F + η‖Fux − y‖22 + υ′‖Φx‖1.

(P0) min
W ,X̂ ,A,x

‖W X̂ −A‖2F + λQ(W ) + τ‖R(x)− X̂‖2F

+ η‖Fux − y‖22 , s.t. ‖αj‖0 ≤ sj ∀j = 1 . . .M.

When compared with (P0), in (P1) the crucial change is the
introduction of the ‖Φx‖1 term.
We will denote this modified framework as the Globally
regularized TLMRI (G-TLMRI).

Tanc and Eksioglu - EUSIPCO 2015 Transform Learning MRI with Global Wavelet Regularization



Introduction
Transform Learning MRI

GTLMRI
Simulations and Conclusion

New Cost
GTLMRI: Denoising
GTLMRI: Reconstruction
GTLMRI: Overall Algorithm

New Method: GTLMRI

(P1) min
W ,X̂ ,A,x

‖W X̂ −A‖2F + λQ(W ) + β‖A‖1

+ τ‖R(x)− X̂‖2F + η‖Fux − y‖22 + υ′‖Φx‖1.

(P0) min
W ,X̂ ,A,x

‖W X̂ −A‖2F + λQ(W ) + τ‖R(x)− X̂‖2F

+ η‖Fux − y‖22 , s.t. ‖αj‖0 ≤ sj ∀j = 1 . . .M.

When compared with (P0), in (P1) the crucial change is the
introduction of the ‖Φx‖1 term.
We will denote this modified framework as the Globally
regularized TLMRI (G-TLMRI).

Tanc and Eksioglu - EUSIPCO 2015 Transform Learning MRI with Global Wavelet Regularization



Introduction
Transform Learning MRI

GTLMRI
Simulations and Conclusion

New Cost
GTLMRI: Denoising
GTLMRI: Reconstruction
GTLMRI: Overall Algorithm

New Method: GTLMRI

(P1) min
W ,X̂ ,A,x

‖W X̂ −A‖2F + λQ(W ) + β‖A‖1

+ τ‖R(x)− X̂‖2F + η‖Fux − y‖22 + υ′‖Φx‖1.

(P0) min
W ,X̂ ,A,x

‖W X̂ −A‖2F + λQ(W ) + τ‖R(x)− X̂‖2F

+ η‖Fux − y‖22 , s.t. ‖αj‖0 ≤ sj ∀j = 1 . . .M.

When compared with (P0), in (P1) the crucial change is the
introduction of the ‖Φx‖1 term.
We will denote this modified framework as the Globally
regularized TLMRI (G-TLMRI).

Tanc and Eksioglu - EUSIPCO 2015 Transform Learning MRI with Global Wavelet Regularization



Introduction
Transform Learning MRI

GTLMRI
Simulations and Conclusion

New Cost
GTLMRI: Denoising
GTLMRI: Reconstruction
GTLMRI: Overall Algorithm

New Method: GTLMRI

(P1) min
W ,X̂ ,A,x

‖W X̂ −A‖2F + λQ(W ) + β‖A‖1

+ τ‖R(x)− X̂‖2F + η‖Fux − y‖22 + υ′‖Φx‖1.

(P0) min
W ,X̂ ,A,x

‖W X̂ −A‖2F + λQ(W ) + τ‖R(x)− X̂‖2F

+ η‖Fux − y‖22 , s.t. ‖αj‖0 ≤ sj ∀j = 1 . . .M.

When compared with (P0), in (P1) the crucial change is the
introduction of the ‖Φx‖1 term.
We will denote this modified framework as the Globally
regularized TLMRI (G-TLMRI).

Tanc and Eksioglu - EUSIPCO 2015 Transform Learning MRI with Global Wavelet Regularization



Introduction
Transform Learning MRI

GTLMRI
Simulations and Conclusion

New Cost
GTLMRI: Denoising
GTLMRI: Reconstruction
GTLMRI: Overall Algorithm

New Method: GTLMRI

We will separate the algorithm into two steps with and
without optimization on x .

(P2) min
W ,X̂ ,A

‖W X̂−A‖2F +λQ(W )+β‖A‖1+τ‖R(x)−X̂‖2F . (4)

(P3) min
x

1
2‖Fux − y‖22 + τ

2η‖R(x)− X̂‖2F + υ′

2η‖Φx‖1. (5)

(P2) can be thought of as denoising.
(P3) can be thought of as reconstruction.
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GTLMRI: Denoising

We will divide (P2) into two in the following form similar to
the TLMRI.

(P2.1) min
W ,A

‖W X̂ −A‖2F + λQ(W ) + β‖A‖1.

(P2.2) min
X̂ ,A
‖W X̂ −A‖2F + β‖A‖1 + τ‖R(x)− X̂‖2F .
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GTLMRI: Denoising

(P2.1) can be approximately solved using iterative
alternation over two steps.

(P2.1.1) min
A
‖W X̂ −A‖2F + β‖A‖1.

(P2.1.2) min
W
‖W X̂ −A‖2F + λQ(W ).

Both (P2.1.1) and (P2.1.2) have closed form solutions.
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GTLMRI: Denoising

Two alternating steps for (P2.2) become as follows.

(P2.2.1) min
A
‖W X̂ −A‖2F + β‖A‖1.

(P2.2.2) min
X̂
‖W X̂ −A‖2F + τ‖R(x)− X̂‖2F .

(P2.2.1) is again solved by soft thresholding.
(P2.2.2) has a simple least squares solution for fixed A
given by (W HW + τ I)−1(W HA+ τR(x)).
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GTLMRI: Reconstruction

The second main step for the solution of (P1) is the
reconstruction step, (P3).

(P3) min
x

1
2‖Fux − y‖22 + τ

2η‖R(x)− X̂‖2F + υ′

2η‖Φx‖1.
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2η‖R(x)− X̂‖2F + υ′

2η‖Φx‖1.
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Define patch to image operator R̂.
R̂(X̂ ) =

(∑
j RT

j x̂ j
)
./w .

(P3) can be approximately rewritten as follows.

(P3′) min
x

1
2

(
‖Fux − y‖22 + τ ′‖x − R̂(X̂ )‖22

)
+ υ‖Φx‖1. (6)
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GTLMRI: Reconstruction

Define two functions:
g(x) = 1

2

(
‖Fux − y‖22+ τ ′‖x − R̂(X̂ )‖22

)
f (x) = υ‖Φx‖1.

(P3′) min
x

f (x) + g(x).

This problem can be solved very efficiently by proximal
splitting methods.
We have used the forward-backward splitting algorithm.
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GTLMRI: Reconstruction

The forward-backward splitting steps:

(P3.1) z = x − γ∇g(x). (7)

(P3.2) x = x + µ(proxγf (z)− x). (8)

∇g(x) =FH
u (Fux − y)+τ ′(x − R̂(X̂ )).

FH
u is the adjoint operator of Fu, it realizes zero-filled

reconstruction.
proxγf (·) is realized by soft thresholding in the transform
(Φ) domain and taking an inverse transform.
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GTLMRI: Overall Algorithm

• Input : Observation, y = Fux? + η; parameters
λ, β, τ, τ ′, υ, γ, µ.
• Goal : min

W ,X̂ ,A,x
‖W X̂ −A‖2F + λQ(W ) + β‖A‖1

+τ‖R(x)− X̂‖2F + η‖Fux − y‖22 + υ′‖Φx‖1

Initialize x = FH
u y .

Main iteration:
• Initialize X̂ = R(x). denoising starts
• Iterate (P2.1), N1 times.
• Iterate (P2.2), N2 times.
• Initialize x = R̂(X̂ ). reconstruction starts
• Iterate (P3.1-P3.2), N3 times.

Output reconstructed MR image x .
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Simulations setting

We compare the reconstruction performance of G-TLMRI
algorithm with TLMRI [Ravishankar and Bresler, 2013],
DLMRI [Ravishankar and Bresler, 2011] and FCSA [Huang
et.al., 2011].
Simulations for two MR images of size (256× 256).
The downsampling ratio for Fu is κ/2562 = 0.25 (4 fold
downsampling) with a random sampling mask.
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Simulations: Original images

a) b) c)

Figure: (a) Sampling mask in k -space with 4-fold undersampling ,
(b,c) the original MRI test images.
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Simulations: Brain image

Figure: Brain image results.
First row: Zero-filling and G-TLMRI. Second row: TLMRI and FCSA.
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Simulations: Brain image
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Figure: Brain image results: SNR versus iteration.
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Simulations: Shoulder image

Figure: Shoulder image results.
First row: Zero-filling and G-TLMRI. Second row: TLMRI and FCSA.
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Simulations: Shoulder image
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Figure: Shoulder image results: SNR versus iteration.
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Conclusion

We have presented a new algorithm called as G-TLMRI for
MRI reconstruction.
G-TLMRI algorithm builds upon the patch level
sparsification of the TLMRI.
G-TLMRI introduces a global regularizer into the TLMRI
framework.
Combination of the local and global regularization terms
results in reconstruction performance exceeding some
competing methods which use these terms alone.
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Thanks for listening.
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Sparse MRI

min
x

1
2‖Fux − y‖22 + ρ1‖Φx‖1 + ρ2‖x‖TV.

Several approaches for solving this cost function or its
variants.
In the original Sparse MRI algorithm [Lustig et.al., 2007]: a
nonlinear conjugate gradient method
Operator and variable splitting methods: FCSA, RecPF,
TVCMRI ...
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