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Abstract

We propose a new approach for the adaptive identification of sparse systems. This approach improves

on the Recursive Least Squares (RLS) algorithm by adding a sparsity inducing weightedℓ1 norm penalty

to the RLS cost function. Subgradient analysis is utilized to develop the recursive update equations for the

calculation of the optimum system estimate which minimizesthe regularized cost function. Two new

algorithms are introduced by considering two different weighting scenarios for theℓ1 norm penalty.

These newℓ1 relaxation based RLS algorithms emphasize sparsity duringthe adaptive filtering process,

and they allow for faster convergence than standard RLS whenthe system under consideration is sparse.

We test the performance of the novel algorithms and compare it to standard RLS and other adaptive

algorithms for sparse system identification. Simulations demonstrate that the new algorithms exploit the

inherent sparse structure effectively.
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I. INTRODUCTION

Sparse representations have acquired considerable interest recently. The sparsity prior tells us

that the object to be recovered is known to be structured suchthat in a certain parameterization

its representation is sparse. By sparse, it is meant that thenumber of significant parameters is

much less than the total dimensionality of the object. Sparse estimation can be recast as the

following combinatorial optimization problem.

min
h∈RN

‖h‖0, such thatd = Φh (1)

Here‖(·)‖0 denotes theℓ0 pseudonorm, which equals the count of the nonzero elements of h.

The ℓ0 formulation for the optimization problem is nonconvex. This combinatorial problem is

transformed into an easier convex form by replacing theℓ0 count by theℓ1 norm.

min
h∈RN

‖h‖1, such thatd = Φh (2)

This kind of ℓ1 relaxation has been utilized in sparse model selection in statistics via the least-

absolute shrinkage and selection operator (Lasso) algorithm [1]. Another important application

of ℓ1 relaxation is the Basis Pursuit algorithm, which searches for sparse signal representations in

overcomplete dictionaries [2]. The emerging compressive sensing literature dwells on the use of

ℓ1 minimization for the recovery of sparse signals from few linear measurements. These recent

applications ofℓ1 minimization consider batch optimization, where theℓ1 minimization is solved

for a fixed set of measurements by effective iterative linearprogramming algorithms. Another

popular approach to the batchℓ1 minimization has been greedy methods including the Matching

Pursuit algorithm. In this paper, rather the online sparse optimization problem is considered,

where the solution is updated as new measurements arrive. This streaming data formulation for

sparse optimization has been considered in [3] and [4]. Another attempt at onlineℓ1 minimization

for sparse representation is proposed in [5], where a homotophy based scheme for dynamical

update of theℓ1 optimization solution is developed.

Adaptive filtering is an important tool for estimation problems where data becomes available

sequentially. There are LMS adaptive algorithms specifically adapted to sparse system identifi-

cation, such as the Proportionate Normalized LMS (PNLMS) algorithm [6] and the improved

Proportionate Normalized LMS (IPNLMS) algorithm. PNLMS approach is more successful

than the plain LMS algorithm in the context of sparse system identification. The proportionate
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updating idea is based on utilizing an adaptation gain proportional to its magnitude for each

coefficient. These algorithms do not utilize the sparse estimation concepts based onℓ0 or ℓ1

norms. Recently, Least Mean Squares (LMS) variants specifically designed for sparse system

identification have been proposed. These adaptive algorithms utilize the novel results from the

sparse reconstruction literature and incorporate the sparsity condition directly into the cost

function via a sparsity inducing penalty term. First such attempt was given in [7]. Here, the

authors employ theℓp, 0 < p 6 1 norm of the weight vector as a regularization term for

diversity minimization. In [8], the LMS cost function is modified by adding anℓ0 norm penalty.

Subsequently theℓ0 norm is replaced by an analytic approximation to it, and the minimization

problem for the cost function becomes tractable. The authors call the resulting adaptive algorithm

as theℓ0-LMS. In [9], both anℓ1 norm term and a log-sum term are considered as the penalty

to be added to the regular LMS cost function. The log-sum penalty was utilized in [10] in

connection with reweightedℓ1 minimization, and the log-sum penalty was shown to be more

sparsity-inducing then the plainℓ1 norm penalty. Analysis conducted in [9] results in the Zero-

Attracting LMS (ZA-LMS) and the Reweighted Zero-Attracting LMS (RZA-LMS) algorithms.

One other attempt at online sparse system identification is given in [11], where a projection

based algorithm is utilized, rather than sparse regularizing a cost function.

Recursive least squares (RLS) adaptive algorithms constitute another important class of adap-

tive algorithms. However, contrary to the comparatively long list of LMS based sparse algorithms

listed above, there have been few RLS based algorithms designed for sparse signal estimation and

specifically for sparse system identification. [12] introduces an online version of the batch least-

squares based MOD algorithm for dictionary identification.Dictionary identification considers

the construction of a suitable dictionary for sparse representation from data, and it is a problem

distinct from sparse system identification or sparse signalestimation. [4] considers a weighted re-

cursive Lasso algorithm for sparse signal estimation. [3] proposes time-weighted (TW) and time-

and norm-weighted (TNW) Lasso approaches for recursive, real-time sparse signal estimation.

The solution to theℓ1-norm regularized least-squares cost function is calculated using an online

coordinate descent algorithm [3]. Another sparsity based adaptive algorithm is presented in [13].

Here, the wavelet based Expectation-Maximization (EM) approach for image restoration in [14]

is adapted to the sparse system identification setting. The resulting recursiveℓ1-regularized least

squares algorithm is denoted as SPARLS and its performance in sparse system identification is
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compared to regular RLS. The SPARLS algorithm is algorithmically quite involved compared to

the plain RLS algorithm. SPARLS update equations are not intuitively related to RLS, whereas the

sparsity regularized LMS algorithms such asℓ0-LMS in [8] and RZA-LMS, ZA-LMS pair in [9]

are quite similar to the standard LMS algorithm. In this paper, we regularize the RLS algorithm

in a way comparable to the methods applied in [8] and [9]. We add a regularizing penalty term to

the RLS cost function, and we minimize this regularized costfunction with respect to the system

impulse response estimate using subdifferential calculus, since the regularized cost function is

convex but not differentiable with respect to the filter tap weights. The sparsifying penalty is taken

to be theℓ1 norm weighted by a general weighting matrix. The ensuing adaptive algorithm is in a

form akin to the conventional RLS scheme. We call this novel algorithm with general weighting

as the Weightedℓ1-RLS (ℓ1-WRLS) algorithm. Considering different weighting matrices results

in different adaptive update equations for the system impulse response estimate. The simplest

weighting scheme is the use of no weighting at all. The use of the non-weightedℓ1 norm

culminates in theℓ1-RLS algorithm. The development of theℓ1-RLS algorithm with preliminary

results was previously presented in [15] as a brief precursor to this paper. As a second, more

advanced weighting method we utilize the reweighting as given in [10], where reweightedℓ1

minimization was proposed. This weighting scheme results in an adaptive algorithm which we

denote as the Reweightedℓ1-RLS (ℓ1-RRLS).

II. WEIGHTED ℓ1-RLS ALGORITHM

We consider the input-output system identification settinggiven by the following relation.

y(n) = hTx(n) + η(n) (3)

Here, theN × 1 vectorsh = [h0, h1, . . . , hN−1]
T ∈ R

N andx(n) = [x(n), x(n − 1), . . . x(n −

N + 1)]T ∈ R
N are the system tap weight vector and the input signal vector,respectively.y(n)

is the output signal,x(n) is the input signal andη(n) denotes the observation noise. Adaptive

system identification methods seek to estimate the system parameter vectorh from the input and

output signals in a sequential manner. We denote the estimate for the system tap weight vector

at time n as h(n) = [h0(n), h1(n), . . . , hN−1(n)]
T . The definition for the standard recursive

least squares cost is

E(n) =

n∑

m=0

λn−m|e(m)|2, (4)
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whereλ is the exponential forgetting factor.e(n) is the instantaneous error term given by

e(n) = y(n)− hT (n)x(n). (5)

In this paper, we pursue an adaptive estimation algorithm for the case when the underlying

system coefficient vectorh has a sparse form. The system vector is said to be sparse when

‖h‖0 ≪ N . This definition of sparsity tells us that the number of strictly non-zero terms in the

system vector are much less than the vector dimension. Otherdefinitions of sparsity are possible

where the number of strictly non-zero terms is replaced withthe number of significant terms.

We seek to modify the RLS cost function in a manner that emphasizes this sparsity assumption.

As introduced in [10] and exemplified by the RZA-LMS algorithm in [9], a tractable way to

force sparsity is by using the weightedℓ1-norm of the parameter vector estimate. Hence, we

regularize the RLS cost function in (4) by adding the weighted ℓ1 norm of the current tap vector

estimate to it.

J(n) =
1

2
E(n) + γ‖Wh(n)‖1 (6)

‖Wh(n)‖1 stands for the weightedℓ1 norm of the tab vector estimate.

‖Wh(n)‖1 =

N−1∑

k=0

wk|hk(n)| (7)

Here, wk, k = 0, 1, 2, . . . , N − 1 are positive valued weighting parameters.W denotes the

N ×N weighting matrix, which is a diagonal matrix with thewk values on the main diagonal.

The parameterγ governs the compromise between the sparsity of the system estimate and the

estimation error. The aim of an adaptive algorithm is to find the system coefficient vector which

minimizes the regularized cost functionJ(n). Let ĥ(n) denote the optimal estimate for the tab

vector which minimizes the cost function in (6). For the standard RLS case the cost function

under consideration is simplyE(n). The condition for the optimum̂h(n) which minimizesE(n)

is written in terms of the gradient ofE(n) with respect toh(n) [16].

∇E(n) |
ĥ(n)= 2

∂E(n)

∂h∗(n)

∣∣∣
ĥ(n)

= 0 (8)

However, when we consider the sparsity regularized cost fuction J(n) in (6), theℓ1 norm term

‖Wh(n)‖1 is nondifferentiable at any point wherehk(n) = 0. Hence, the gradient∇J(n)

does not exist at any point wherehk(n) = 0. A substitute for the gradient in the case of

nondifferentiable convex functions such as‖Wh(n)‖1 here is offered by the definition of the
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subgradient [17, p. 227]. Letf(ϕ) : RN → R denote a convex function. At any point where

this function is not differentiable there may exist many valid subgradient vectors. The set of

all the subgradients for the convex functionf(ϕ) is called as the subdifferential off(ϕ). The

subdifferential is denoted by∂f(ϕ). The subdifferential for‖Wh(n)‖1 can be calculated using

results from subdifferential calculus. Consider the case when the convex functionf(ϕ) can be

written as the pointwise maximum of a set of differentiable and convex functionsφ(ϕ, z), z ∈ Z.

f(ϕ) = max
z∈Z

φ(ϕ, z) (9)

The subdifferential at any point forf(ϕ) as defined in (9) is calculated by forming the convex

hull of the union of the differentials of the functions achieving the maximum at this point [17,

p.245]. This result can be written in the following form.

∂f(ϕ) = conv
{
∇φ(ϕ, z) | φ(ϕ, z) = f(ϕ)

}
(10)

The ℓ1 norm function, that isf(ϕ) = ‖ϕ‖1 can be expressed as the maximum of a total of2N

linear functions.

‖ϕ‖1 = max
{
sTϕ | s ∈ R

N , s(i) ∈ {±1}
}

(11)

When we apply the result in (10) onto (11), it follows that thesubdifferential for‖ϕ‖1 is

calculated as below.

∂‖ϕ‖1 =
{
d | ‖d‖∞ 6 1,dTϕ = ‖ϕ‖1

}
(12)

Hence, thekth element of the subdifferential for‖ϕ‖1 can be written in the below form.

{
∂‖ϕ‖1

}
k
=





{
ϕk/|ϕk|

}
ϕk 6= 0

{
d | |d| 6 1

}
ϕk = 0

(13)

For points with no zero element, that is whenϕk 6= 0 ∀k = 0, . . . , N − 1, the subdifferential is

a single vector. For any point with someϕk = 0, there is a valid subgradient vector with itskth

entry equal to zero, since|d| = 0 is allowed on the second line of (13). Using these results we

can state that one valid subgradient vector for‖ϕ‖1 is as given below.

∇S‖ϕ‖1 = sgn
(
ϕ
)

(14)

We utilize∇Sf(ϕ) to denote a subgradient vector of the functionf(ϕ). A subgradient vector

is an element of the subdifferential set, hence∇Sf(ϕ) ∈ ∂f(ϕ). sgn(·), acting possibly on a
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vector, denotes the componentwise sign function.

{
sgn

(
ϕ
)}

k
=




ϕk/|ϕk| ϕk 6= 0

0 ϕk = 0
(15)

Using (14) and the chain rule for subdifferential of an affinetransformation of a convex function

[17, p.233], one valid subgradient vector for‖Wh(n)‖1 can be written as follows.

∇S‖Wh(n)‖1 = W
T sgn

(
Wh(n)

)
(16)

Assuming that the weighting matrixW is a diagonal matrix with positive entries, the subgradient

becomes

∇S‖Wh(n)‖1 = Wsgn
(
h(n)

)
. (17)

Accordingly, one valid subgradient vector of the penalizedcost functionJ(n) in (6) with respect

to the weight vectorh(n) is written by using (17) and the fact thatE(n) is differentiable

everywhere.

∇SJ(n) =
1

2
∇E + γWsgn

(
h(n)

)
(18)

The ith element of this subgradient vector is calculated as below [16].
{
∇SJ(n)

}
i
= −

n∑

m=0

λn−me(m)x(m − i) + γwisgn
(
hi(n)

)
(19)

Another result from the subdifferential calculus is about the argument value which minimizes a

convex function. This result states that a pointϕ̂ is a minimizer of a convex functionf(ϕ) if

and only if 0 ∈ ∂f(ϕ̂) [17, p.257]. This means that for̂ϕ to be a minimizer,d = 0 should be

a subgradient off at ϕ̂. This result suggests that we set the subgradient term in (19) equal to

zero to find the optimal least squares solution, namelyĥ(n) which minimizesJ(n).
n∑

m=0

λn−m
{
y(m)−

N−1∑

k=0

ĥk(n)x(m− k)
}
x(m− i) = γwisgn

(
ĥi(n)

)
(20)

After some manipulation (20) assumes the form given below.
N−1∑

k=0

ĥk(n)

{ n∑

m=0

λn−mx(m− k)x(m− i)

}
=

n∑

m=0

λn−my(m)x(m− i)− γwi sgn
(
ĥi(n)

)
(21)

(21) can be written for alli = 0, . . . , N − 1 together in a matrix form. Vectorizing (21) results

in the following matrix equation, which we call as the modified deterministic normal equations.

Φ(n)ĥ(n) = r(n)− γWsgn
(
ĥ(n)

)
(22)
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In (22),Φ(n) is theN×N exponentially weighted deterministic autocorrelation matrix estimate

for the input signalx(n) [16].

Φ(n) =
n∑

m=0

λn−mx(m)xT (m) (23)

Similarly, r(n) defines theN×1 exponentially weighted deterministic cross-correlationestimate

vector between the output signaly(n) andx(n).

r(n) =
n∑

m=0

λn−my(m)x(m) (24)

W in (22) is again the weighting matrix utilized in the weighted ℓ1 norm penalty of (7). We

define a new variableθ(n) for the right hand side of (22).

θ(n) = r(n)− γWsgn
(
ĥ(n)

)
(25)

With the introduction ofθ(n) the normal equation (22) transforms into a simpler form.

Φ(n)ĥ(n) = θ(n) (26)

On a par with the development of standard RLS algorithm, the autocorrelation and cross-

correlation estimates have corresponding rank-one updateequations pertaining to them.

Φ(n) = λΦ(n− 1) + x(n)xT (n) (27)

r(n) = λr(n− 1) + y(n)x(n) (28)

The θ(n) also has a recursive update equation considering its definition (25) and (28). The

update equation forθ(n) is calculated as

θ(n) = λθ(n− 1) + y(n)x(n)−
{
γWsgn

(
ĥ(n)

)
− λγWsgn

(
ĥ(n− 1)

)}
. (29)

In a similar vein to the conventional RLS paradigm, we desirea gradual iterative procedure for

finding the optimal least squares solution, instead of solving the modified normal equations (26)

directly for ĥ(n). The iterative solution should have the following structure.

ĥ(n) = ĥ(n− 1) +∆ĥ(n− 1). (30)

Here,∆ĥ(n − 1) is an instantaneous corrective step applied to the estimatevector, and it is

written as a function depending on the prior estimateĥ(n− 1). To reach an update equation in

the form of (30), we need to convert (29) into a recursion withonly the prior estimatêh(n− 1)
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terms on the right hand side. We assume that the signs of the tab estimate values do not change

significantly in a single time step, hencesgn
(
ĥ(n)

)
≈ sgn

(
ĥ(n−1)

)
. Therefore, we approximate

(29) with

θ(n) ≈ λθ(n− 1) + y(n)x(n) + γ(λ− 1)Wsgn
(
ĥ(n− 1)

)
. (31)

The inverse of the autocorrelation matrix is given a specificname to further the analysis.

P(n) = Φ
−1(n) (32)

Using the matrix inversion lemma on (27), the recursive timeupdate for the correlation matrix

estimate inverseP(n) is performed using the Riccati equation for the RLS algorithm.

P(n) = λ−1
{
P(n− 1)− k(n)xT (n)P(n− 1)

}
(33)

Here,k(n) is the so-called gain vector defined as follows.

k(n) =
P(n− 1)x(n)

λ+ xT (n)P(n− 1)x(n)
(34)

With the advent of theP(n), the normal equation (26) becomes

ĥ(n) = P(n)θ(n). (35)

When we insert the recursions (27) and (31) into (35), the update for the tab estimate assumes

the following structure.

ĥ(n) = P(n− 1)θ(n− 1)− k(n)xT (n)P(n− 1)θ(n− 1) + y(n)k(n) + γ
(λ− 1

λ

)
×

{
P(n− 1)Wsgn

(
ĥ(n− 1)

)
− k(n)xT (n)P(n− 1)Wsgn

(
ĥ(n− 1)

)}
(36)

Apprehending that̂h(n− 1) = P(n− 1)θ(n− 1) from (35), the recursive update equation for

the tab vector estimate becomes as follows.

ĥ(n) = ĥ(n− 1) + k(n)
{
y(n)− ĥ

T
(n− 1)x(n)

}
+ γ

(λ− 1

λ

){
IN − k(n)xT (n)

}
×

P(n− 1)Wsgn
(
ĥ(n− 1)

)
(37)

Here,IN is theN×N identity matrix. The update equation (37) finalizes the adaptive algorithm

for the estimation of the sparse system tab vector. We call this novel adaptive sparsity based

algorithm as the “Weightedℓ1-RLS” (ℓ1-WRLS). When we compareℓ1-WRLS with the regular

RLS algorithm, we see that the main difference occurs in the update equation for̂h(n), that is

in (37). The last term in (37) starting withγ
(λ− 1

λ

)
constitutes the difference from the regular

RLS. If we setλ = 1 or γ = 0, the ℓ1-WRLS algorithm reduces to regular RLS.
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III. CHOOSING THE WEIGHTS: ℓ1-RRLS ALGORITHM

After the development of theℓ1-WRLS, we are confronted with deciding on the weighting

matrixW. One obvious choice for the weighting matrix is using the identity matrixW = IN . In

this case the penalty term in (7) equals the straightℓ1 norm,‖h(n)‖1 =
∑N−1

k=0 |hk(n)|. We will

denote the resulting algorithm asℓ1-RLS, as this is a non-weighted special case of theℓ1-WRLS.

An intelligent way to chose the weights is to aim at making theweighted ℓ1 norm have

values as similar as possible to theℓ0 norm, asℓ0 norm is the true measure of sparseness. The

weightedℓ1 norm value becomes similar toℓ0 by choosing the weights inversely proportional

to the magnitude of the actual tab values of the system under consideration. Hence, the weights

are to be chosen as given below.

wk =





1

|hk|
, hk 6= 0

∞, hk = 0

(38)

However, the true system tab values are the unknowns the adaptive system strives to infer.

Therefore, we utilize the current adaptive tab estimate inverses as the weighting values. Hence,

the time-varying weights become as follows.

wk(n) =
1

|hk(n− 1)|+ ǫ
(39)

The resulting weighting matrixW(n) is a diagonal matrix with thewk(n) values from (39) on

the diagonal. The parameterǫ > 0 in (39) is included in the denominator to enhance stability

in the case of a zero-valued instantaneous tab estimate. In [10], it is demonstrated that values

slightly less than the magnitude of the actual nonzero system tab weights are proper choices

for ǫ. By the insertion of the instantaneous weight values in (39)into the tab estimate update

equation (37), the resulting weighted update equation is written as follows.

ĥ(n) = ĥ(n− 1) + k(n)
{
y(n)− ĥ

T
(n− 1)x(n)

}
+ γ

(λ− 1

λ

){
IN − k(n)xT (n)

}
×

P(n− 1)
sgn

(
ĥ(n− 1)

)

|ĥ(n− 1)|+ ǫ
(40)

The vector division operation in this equation denotes a simple componentwise division. We

will refer to the resulting adaptive algorithm asℓ1-Reweighted RLS (ℓ1-RRLS), to underline

the connection to the reweightedℓ1 minimization approach as introduced in [10]. Theℓ1-RRLS
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algorithm can also be developed using a log-sum penalty terminstead of the weightedℓ1 norm

penalty in (6). The log-sum penalty is calculated as follows.

N−1∑

k=0

log(|hk(n)|+ ǫ) (41)

If we replace theℓ1 norm penalty term‖Wh(n)‖1 in (6) with the log-sum cost given in (41) and

than do the minimization analysis, the resulting adaptive algorithm is theℓ1-RRLS algorithm.

As stated in [10], establishing a connection with the log-sum penalty is important. Utilizing the

log-sum cost term as a penalty is potentially more sparsity-inducing than the simpleℓ1 norm

[10]. Hence, we can develop theℓ1-RRLS algorithm via two different approaches. One approach

is to utilize a diagonal weighting matrixW(n) constructed from the weight values (39), in the

ℓ1-WRLS update equation (37). A second approach is to employ a log-sum term as the sparsity-

inducing penalty in (6) and than do the minimization analysis using subgradients. The complete

ℓ1-RRLS algorithm is outlined in Algorithm 1.

The generalℓ1-WRLS algorithm is obtained simply by replacing the tab vector update step

(step 6) in Algorithm 1 with the general update equation given in (37). The non-weightedℓ1-RLS

algorithm is obtained by settingW = IN .

Algorithm 1 ℓ1-Reweighted RLS (ℓ1-RRLS) algorithm.

λ, γ, ǫ, x(n), y(n) ⊲ inputs

h(−1) = 0, P(−1) = δ−1
IN ⊲ initial values

1: for n := 0, 1, 2, . . . do ⊲ time recursion

2: kλ(n) = P(n− 1)x(n)

3: k(n) =
kλ(n)

λ+ xT (n)kλ(n)

4: ξ(n) = y(n)− hT (n− 1)x(n)

5: P(n) =
1

λ

[
P(n− 1)− k(n)kT

λ (n)
]

6: h(n) = h(n− 1) + k(n)ξ(n) + γ
(λ− 1

λ

){
IN − k(n)xT (n)

}
P(n− 1)

sgn
(
h(n− 1)

)

|h(n− 1)|+ ǫ

7: end for ⊲ end of recursion
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IV. COMPARISON WITH OTHER ONLINE ALGORITHMS

The developedℓ1-WRLS algorithm presents a method for sparse system identification which is

intuitively related to the standard RLS approach. [4] also considers the weighted,ℓ1-regularized

least-squares cost function as presented in (6). The authors employ a subgradient-based iterative

minimizing approach, where the iterations simply update the estimate in the direction of the

current subgradient iterate. Since the update is simply a possibly time-varying constant times the

subgradient iterate, the algorithm as presented in [4] is a an LMS-like first order algorithm with

relatively slow convergence as stated in [3].ℓ1-WRLS presented in this paper on the other hand,

employs a different minimization approach which results inthe second-order update equation

(37).

[3] proposes TW and TNW Lasso approaches for real-time sparse signal estimation, again

starting with the possibly weightedℓ1-regularized least-squares cost function similar to the one

presented in (6). The online minimization for this cost function is realized by solving a succession

of convex optimization problems. A convex optimization problem is solved for each measurement

value. A simplified version of these algorithms which employs minimization with respect to only

one coordinate per iteration cycle is also developed, and this is called as the Online Coordinate

Descent (OCD) algorithm. Inℓ1-WRLS, all coordinates of the estimate vector are updated at

every iteration cycle without resorting to solving a full convex program per measurement.

[13] introduces the SPARLS algorithm for online sparse system identification. The problem

is again formulated as the convex program of minimizing theℓ1-regularized least-squares cost

function. The optimization at each time point is reformulated as a maximum-likelihood (ML)

problem which is solved by an iterative EM algorithm. Hence,for each measurement value

an iterative EM algorithm is run to completion. The update step of ℓ1-WRLS requires no

iterative algorithm per time index and is realized simply by(37). The SPARLS algorithm has a

computational complexity ofO(N2) multiplications per time step [13]. Theℓ1-WRLS algorithm

has this same general complexity, which coincides with the multiplicational complexity of the

standard RLS algorithm.ℓ1-WRLS distinguishes from the standard RLS algorithm only inthe

last term of the final update step. Hence, it has the sameO(N2) complexity as the RLS algorithm.
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V. SIMULATION RESULTS

In this section, we compare the performance of the novelℓ1-WRLS algorithms to the regular

RLS, regular LMS and other sparsity oriented adaptive algorithm. The first experiment considers

the tracking capabilities ofℓ1-RRLS, ℓ1-RLS, RLS, RZA-LMS [9], ZA-LMS [9], ℓ0-LMS [8]

and LMS. The sparse system to be identified has a total of 64 tabs and 4 of them are nonzero.

The positions and amplitudes of the nonzero tab weights are chosen randomly. Inputx(n) is

assumed to be white and AWGN observation noise is added to thesystem output with an SNR

value of 20 dB. The parameters for the different algorithm are chosen as below:

• ℓ1-RRLS, ℓ1-RLS, and RLS:λ = 0.99

• ℓ1-RRLS: γ = 1.2, ǫ = 0.1

• ℓ1-RLS: γ = 3

• RZA-LMS, ZA-LMS, ℓ0-LMS and LMS:µ = 0.008

• RZA-LMS: ρ = 8× 10−4, σ = 10

• ZA-LMS: ρ = 3× 10−4, σ = 10

• ℓ0-LMS: κ = 2× 10−4, β = 5, Q = 1

Theλ parameter for the RLS algorithm and theµ parameter for the LMS algorithm are chosen as

to result in roughly equal steady-state error values for thestandard RLS and LMS algorithms. The

RLS and LMS variants utilize these sameλ andµ values. The remaining parameters are found by

repeated trials as to cause the minimum steady-state error for their respective adaptive algorithm.

The normalized mean square deviation (MSD) of the system impulse response estimates versus

time iteration index are plotted in Fig. 1. The normalized MSD is defined as

MSD =
E{‖ĥ− h‖22}

E{‖h‖22}
(42)

The MSD’s for all the algorithms are averaged over a total of 500 runs. Theℓ0-LMS and RZA-

LMS algorithms have almost equivalent performance, which is to be expected from the similarity

between their respective tab estimate update equations [8], [9]. They have better convergence than

ZA-LMS. ℓ1-RRLS andℓ1-RLS present convergence and steady-state error improvements over

the regular RLS algorithm, just as RZA-LMS,ℓ0-LMS and ZA-LMS work better than the regular

LMS algorithm. It is interesting to note that the steady-state error for theℓ1-RRLS coincides with

the RZA-LMS, ℓ0-LMS pair, and the steady-state error for theℓ1-RLS algorithm coincides with

the ZA-LMS algorithm. The novelℓ1-WRLS algorithms also maintain the faster convergence
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of RLS over LMS. Hence, theℓ1-WRLS algorithms do indeed present RLS counterparts to the

sparsity based LMS algorithms of [8] and [9].

The second experiment dwells on the effect of sparsity onℓ1-RRLS and RLS performance. The

resulting learning curves for this experiment are presented in Fig.2. The system to be identified

is assumed to have a total of 64 coefficients. The number of nonzero coefficients varies from 4

to 64, hence finally attaining a totally non-sparse system. As in the first experiment, the positions

and amplitudes of the nonzero tabs are random variables. AWGN observation noise with an SNR

of 20 dB is present. The algorithm parameters stay the same asin the first experiment, except

varying γ values are used for different sparsity levels.

• ℓ1-RRLS, and RLS:λ = 0.99

• ℓ1-RRLS: γ = [1.2 1.5 2.0 2.5 3], ǫ = 0.1

The results presented in Fig.2 demonstrate that RLS performance is independent from the system

sparsity. On the other hand,ℓ1-RRLS steady-state error performance degrades with a decline

in sparsity. Theℓ1-RRLS steady-state error is the least for the most sparse system with only 4

nonzero tabs. The steady-state error gradually increases as the number of nonzero terms increases.

Finally for a nonsparse system with 64 nonzero terms, the performance curves ofℓ1-RRLS and

straight RLS coincide.

In the third experiment, we analyze the effect of the choice for γ on theℓ1-RRLS performance.

The system to be identified has a total of 64 coefficients where4 are nonzero, and SNR is 20 dB.

The γ parameter changes from 0 up to 3.5 in steps of 0.5.ℓ1-RRLS with γ = 0 corresponds to

the standard RLS algorithm. As seen in Fig.3, the steady-state error makes a dip aroundγ = 1.

However, theℓ1-RRLS performance is not overly sensitive to theγ value.

The fourth experiment compares the performance of theℓ1-RRLS algorithm to RLS under

different SNR values. The underlying system has again impulse response length of 64 with 4

nonzero tabs. The learning curves for SNR values of 10, 20, 30and 40 dB are presented in

Fig.4. Theλ value and theγ parameter forℓ1-RRLS chosen as follows:

• ℓ1-RRLS, ℓ1-RLS and RLS:λ = 0.99

• ℓ1-RRLS: γ = 3.5 for 10 dB, γ = 1.2 for 20 dB, γ = 0.3 for 30 dB, γ = 0.1 for 40 dB

• ℓ1-RLS: γ = 5 for 10 dB, γ = 3 for 20 dB, γ = 0.5 for 30 dB, γ = 0.3 for 40 dB
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TABLE I

OPTIMAL VALUES OF γ VERSUS NOISE VARIANCE.

σ2 ℓ1-RRLS ℓ1-RLS SPARLS

0.0001 0.02 0.06 100

0.0005 0.04 0.08 50

0.001 0.08 0.15 35

0.005 0.12 0.3 15

0.01 0.18 0.5 13

0.05 0.35 1 3

Theseγ values are found by repeated trials as to minimize the corresponding steady-state error

value. As can be inferred from Fig.4,ℓ1-RRLS andℓ1-RLS have better convergence and steady-

state properties than the regular RLS for all SNR values.

As a final experiment, we compare the performance ofℓ1-WRLS to another recently proposed

adaptive sparse system identification algorithm, namely SPARLS [13]. 1 For this experiment we

repeat the experimental setup as described in [13] in the time-invariant scenario (fd = 0). We

realizeℓ1-RRLS,ℓ1-RLS, regular RLS and SPARLS. The input data is Gaussian distributed with

length 500, and the sparse system to be identified has a total of 100 tabs where 5 of them are

nonzero. The simulation results are averaged over 50 trials. For RLSλ = 1, and for the other

algorithmsλ = 0.999. The optimalγ values for the SPARLS are taken from [13], and theγ

values forℓ1-RRLS andℓ1-RLS are obtained via repeated simulations. Theγ values utilized for

different noise variance levelsσ2 are listed in Table 1. Fig. 5 demonstrates the final MSD of the

four algorithms versus SNR.ℓ1-RRLS has the best performance among the four algorithms and

presents a gain of about 2 dB in MSD against SPARLS.ℓ1-RLS performs better than RLS, but

is slightly inferior to SPARLS.

Fig. 6 displays the time variation of the MSD for the four algorithms when SNR is 30

dB. In consistence with the results of Fig. 5, theℓ1-RRLS has the best performance among

the four algorithms. These results suggest that the proposed ℓ1-RRLS sparse system adaptive

algorithm outperforms both SPARLS and RLS, whereas the unweightedℓ1-RLS variant is inferior

1The authors of [13] have generously shared the code for theirsimulations.
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to SPARLS but superior to the regular RLS.

VI. CONCLUSIONS

This paper introduced a novel approach for adaptive identification of sparse systems. RLS

algorithm is regularized by adding a weightedℓ1 norm penalty to the cost function. The update

equations for this new approach are developed by utilizing subgradient analysis on the nondiffer-

entiableℓ1 norm term. Two new adaptive algorithms result for two different weighting scenarios

of the ℓ1 norm, namelyℓ1-RRLS andℓ1-RLS. Numerical simulations demonstrate that these

algorithms do indeed bring about better convergence and steady-state performance than regular

RLS when the system to be identified is sparse. The newℓ1 regularization based algorithms

improve on the standard RLS, just as the recent sparsity regularization based LMS algorithms

improve on the standard LMS algorithm in the sparse setting.
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