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Abstract

We propose a new approach for the adaptive identificatioparfse systems. This approach improves
on the Recursive Least Squares (RLS) algorithm by addin@esip inducing weighted;, norm penalty
to the RLS cost function. Subgradient analysis is utilizedevelop the recursive update equations for the
calculation of the optimum system estimate which minimittess regularized cost function. Two new
algorithms are introduced by considering two different ginting scenarios for thé; norm penalty.
These new/; relaxation based RLS algorithms emphasize sparsity dunegdaptive filtering process,
and they allow for faster convergence than standard RLS wheerystem under consideration is sparse.
We test the performance of the novel algorithms and compaie standard RLS and other adaptive
algorithms for sparse system identification. Simulatioesidnstrate that the new algorithms exploit the

inherent sparse structure effectively.



I. INTRODUCTION

Sparse representations have acquired considerablesintecently. The sparsity prior tells us
that the object to be recovered is known to be structured thathin a certain parameterization
its representation is sparse. By sparse, it is meant thatuheer of significant parameters is
much less than the total dimensionality of the object. Sp&&imation can be recast as the

following combinatorial optimization problem.
min ||hl|o, such thatd = ®h (1)
heRN

Here ||(-)||o denotes the, pseudonorm, which equals the count of the nonzero eleméris o
The ¢, formulation for the optimization problem is nonconvex. Jliombinatorial problem is

transformed into an easier convex form by replacing4heount by the/; norm.
min ||k|;, such thatd = ®h (2)
heRN

This kind of /; relaxation has been utilized in sparse model selectionatisits via the least-
absolute shrinkage and selection operator (Lasso) adhgorji]. Another important application
of ¢, relaxation is the Basis Pursuit algorithm, which searcbesparse signal representations in
overcomplete dictionaries [2]. The emerging compressavesing literature dwells on the use of
¢, minimization for the recovery of sparse signals from feweéin measurements. These recent
applications of/; minimization consider batch optimization, where thaninimization is solved
for a fixed set of measurements by effective iterative ling@gramming algorithms. Another
popular approach to the batéh minimization has been greedy methods including the Matchin
Pursuit algorithm. In this paper, rather the online spans@nozation problem is considered,
where the solution is updated as new measurements arrive sireaming data formulation for
sparse optimization has been considered in [3] and [4]. Aercdttempt at onliné, minimization
for sparse representation is proposed in [5], where a hgrhgtbased scheme for dynamical
update of the/; optimization solution is developed.

Adaptive filtering is an important tool for estimation prebis where data becomes available
sequentially. There are LMS adaptive algorithms specljicadlapted to sparse system identifi-
cation, such as the Proportionate Normalized LMS (PNLM$pathm [6] and the improved
Proportionate Normalized LMS (IPNLMS) algorithm. PNLMS papach is more successful

than the plain LMS algorithm in the context of sparse systdemtification. The proportionate



updating idea is based on utilizing an adaptation gain ptapwl to its magnitude for each
coefficient. These algorithms do not utilize the sparsenedton concepts based dai or ¢,
norms. Recently, Least Mean Squares (LMS) variants spaltyfidesigned for sparse system
identification have been proposed. These adaptive algasitiitiize the novel results from the
sparse reconstruction literature and incorporate thesgpacondition directly into the cost
function via a sparsity inducing penalty term. First sucterapt was given in [7]. Here, the
authors employ the,, 0 < p < 1 norm of the weight vector as a regularization term for
diversity minimization. In [8], the LMS cost function is mibieéd by adding ar/, norm penalty.
Subsequently thé, norm is replaced by an analytic approximation to it, and theimmzation
problem for the cost function becomes tractable. The astbalt the resulting adaptive algorithm
as thely-LMS. In [9], both an/; norm term and a log-sum term are considered as the penalty
to be added to the regular LMS cost function. The log-sum Ipemnveas utilized in [10] in
connection with reweighted; minimization, and the log-sum penalty was shown to be more
sparsity-inducing then the plaifi norm penalty. Analysis conducted in [9] results in the Zero-
Attracting LMS (ZA-LMS) and the Reweighted Zero-Attragin.MS (RZA-LMS) algorithms.
One other attempt at online sparse system identificationvisngin [11], where a projection
based algorithm is utilized, rather than sparse regutagia cost function.

Recursive least squares (RLS) adaptive algorithms catest@nother important class of adap-
tive algorithms. However, contrary to the comparativelyddist of LMS based sparse algorithms
listed above, there have been few RLS based algorithmsrdssbigr sparse signal estimation and
specifically for sparse system identification. [12] introds an online version of the batch least-
squares based MOD algorithm for dictionary identificatibmctionary identification considers
the construction of a suitable dictionary for sparse regmtgion from data, and it is a problem
distinct from sparse system identification or sparse sigstnation. [4] considers a weighted re-
cursive Lasso algorithm for sparse signal estimation. [8ppses time-weighted (TW) and time-
and norm-weighted (TNW) Lasso approaches for recursivad;ti@e sparse signal estimation.
The solution to the;-norm regularized least-squares cost function is caledlasing an online
coordinate descent algorithm [3]. Another sparsity baskgptave algorithm is presented in [13].
Here, the wavelet based Expectation-Maximization (EM)rapph for image restoration in [14]
is adapted to the sparse system identification setting. @hting recursive, -regularized least

squares algorithm is denoted as SPARLS and its performansparse system identification is



compared to regular RLS. The SPARLS algorithm is algoritiaity quite involved compared to
the plain RLS algorithm. SPARLS update equations are noitimely related to RLS, whereas the
sparsity regularized LMS algorithms such@d-MS in [8] and RZA-LMS, ZA-LMS pair in [9]
are quite similar to the standard LMS algorithm. In this pape regularize the RLS algorithm
in a way comparable to the methods applied in [8] and [9]. Wit adegularizing penalty term to
the RLS cost function, and we minimize this regularized ¢osttion with respect to the system
impulse response estimate using subdifferential calcigee the regularized cost function is
convex but not differentiable with respect to the filter tagights. The sparsifying penalty is taken
to be the/; norm weighted by a general weighting matrix. The ensuingpadaalgorithm is in a
form akin to the conventional RLS scheme. We call this nolgb@thm with general weighting
as the Weighted;-RLS (¢;-WRLS) algorithm. Considering different weighting magetcresults
in different adaptive update equations for the system isguesponse estimate. The simplest
weighting scheme is the use of no weighting at all. The usehef non-weightedd; norm
culminates in the;-RLS algorithm. The development of tiie-RLS algorithm with preliminary
results was previously presented in [15] as a brief precusahis paper. As a second, more
advanced weighting method we utilize the reweighting agmiin [10], where reweighted,
minimization was proposed. This weighting scheme resaltan adaptive algorithm which we
denote as the Reweightdég-RLS (/1-RRLS).

I[I. WEIGHTED £,;-RLS ALGORITHM

We consider the input-output system identification setgivgn by the following relation.
y(n) = h'z(n) +n(n) 3)

Here, theN x 1 vectorsh = [hg, hi,...,hn_1]7 € RN andz(n) = [z(n),z(n —1),...2(n —
N+ 1)]T € RY are the system tap weight vector and the input signal veepectivelyy(n)

is the output signalz(n) is the input signal and(n) denotes the observation noise. Adaptive
system identification methods seek to estimate the systeamygder vectoh from the input and
output signals in a sequential manner. We denote the estifoathe system tap weight vector
at timen as h(n) = [ho(n), hi(n),...,hy_1(n)]*. The definition for the standard recursive

least squares cost is

n

E(n) =) A" "le(m)P, (4)

m=0



where \ is the exponential forgetting factaf(n) is the instantaneous error term given by

e(n) = y(n) — h' (n)z(n). (5)

In this paper, we pursue an adaptive estimation algorithmtie case when the underlying
system coefficient vectoh has a sparse form. The system vector is said to be sparse when
|h|lo < N. This definition of sparsity tells us that the number of $lyimon-zero terms in the
system vector are much less than the vector dimension. @#imitions of sparsity are possible
where the number of strictly non-zero terms is replaced with number of significant terms.

We seek to modify the RLS cost function in a manner that empégagshis sparsity assumption.

As introduced in [10] and exemplified by the RZA-LMS algonithn [9], a tractable way to
force sparsity is by using the weightég-norm of the parameter vector estimate. Hence, we
regularize the RLS cost function in (4) by adding the weightenorm of the current tap vector

estimate to it.

1
J(n) = 5&€(n) +7[Wh(n)| (6)
|Wh(n)||; stands for the weightei norm of the tab vector estimate.
N-1
IWh(n)ls = welh(n)| (7)
k=0
Here, wy, £k = 0,1,2,...,N — 1 are positive valued weighting parameteM. denotes the

N x N weighting matrix, which is a diagonal matrix with the, values on the main diagonal.
The parametety governs the compromise between the sparsity of the systémats and the
estimation error. The aim of an adaptive algorithm is to fine $ystem coefficient vector which
minimizes the regularized cost functiof{n). Let ﬁ(n) denote the optimal estimate for the tab
vector which minimizes the cost function in (6). For the sl@m RLS case the cost function
under consideration is simpl§(n). The condition for the optimurh(n) which minimizes (n)

is written in terms of the gradient & (n) with respect toh(n) [16].

-, 0&(n) B
VE(n) |h(n)_ 28h*7(n) Ay 0 (8)

However, when we consider the sparsity regularized cosiofuc/(n) in (6), the/; norm term
IWh(n)||, is nondifferentiable at any point wherg,(n) = 0. Hence, the gradienV.J(n)
does not exist at any point wherg,(n) = 0. A substitute for the gradient in the case of

nondifferentiable convex functions such @& h(n)||; here is offered by the definition of the



subgradient [17, p. 227]. Lef(¢) : RY — R denote a convex function. At any point where
this function is not differentiable there may exist manyiddadubgradient vectors. The set of
all the subgradients for the convex functigixp) is called as the subdifferential gf(¢). The
subdifferential is denoted byf (). The subdifferential foff Wh(n)||; can be calculated using
results from subdifferential calculus. Consider the cabemthe convex functiorf(¢) can be

written as the pointwise maximum of a set of differentialbie aonvex functiong (e, 2), z € Z.

f(p) = max ¢(p, 2) 9)

2€EZ
The subdifferential at any point fof(¢) as defined in (9) is calculated by forming the convex
hull of the union of the differentials of the functions achiey the maximum at this point [17,

p.245]. This result can be written in the following form.

0f () = conv{ V(. 2) | 6(p,2) = () | (10)

The ¢, norm function, that isf(¢) = |||l can be expressed as the maximum of a tota}’of

linear functions.
el = max{s"¢ | s € RY, s(i) € {1} } (11)

When we apply the result in (10) onto (11), it follows that thebdifferential for||||; is
calculated as below.

Ollelh = {d| Il <1.d"¢ = lli} (12)
Hence, thek'™ element of the subdifferential fdfp||; can be written in the below form.

= (13)
{d]1d <1} ¢@r=0

For points with no zero element, that is whep # 0 Vk =0, ..., N — 1, the subdifferential is

{olgl,} =] /1o 0

a single vector. For any point with some = 0, there is a valid subgradient vector with ig
entry equal to zero, since| = 0 is allowed on the second line of (13). Using these results we

can state that one valid subgradient vector [f@i|; is as given below.

V¥|e|l1 = sgn(ep) (14)

We utilize V° f(¢) to denote a subgradient vector of the functibfy). A subgradient vector

is an element of the subdifferential set, hengef(yp) € df(p). sgn(-), acting possibly on a



vector, denotes the componentwise sign function.

ei/lerl pp # 0
{sn(w)} = O o (15)

Using (14) and the chain rule for subdifferential of an affirensformation of a convex function

[17, p.233], one valid subgradient vector i6¥Wh(n)||; can be written as follows.
VE|Wh(n)|i = Wsgn(Wh(n)) (16)

Assuming that the weighting matri®v is a diagonal matrix with positive entries, the subgradient
becomes
VS| Wh(n) |, = Wsen(h(n)). (17)

Accordingly, one valid subgradient vector of the penalizedt function/(n) in (6) with respect
to the weight vectorh(n) is written by using (17) and the fact th&t(n) is differentiable

everywhere.

V3J(n) = %vg +YWsgn(h(n)) (18)

Thei*" element of this subgradient vector is calculated as beldj. [1

n

{Vsj(n)}_ =— Z A e(m)z(m — i) + yw;sgn (hi(n)) (19)

! m=0

Another result from the subdifferential calculus is abdwe argument value which minimizes a
convex function. This result states that a paphis a minimizer of a convex functiorfi(y) if
and only if0 € 0f () [17, p.257]. This means that f@ to be a minimizerd = 0 should be
a subgradient off at . This result suggests that we set the subgradient term hddal to

zero to find the optimal least squares solution, nanﬁby) which minimizesJ(n).

n

3 )\"_m{y(m) - Z_ ha(n)z(m — l{:)}x(m — i) = ywisgn (hi(n)) (20)

m=0

After some manipulation (20) assumes the form given below.

z_: ﬁk(n){z A" (m — k)x(m — z)} = Z ATy (m)z(m — 1) — yw; sgn(ﬁi(n)) (22)
k=0

(21) can be written for alf = 0,..., N — 1 together in a matrix form. Vectorizing (21) results

in the following matrix equation, which we call as the modifiéeterministic normal equations.

@(n)ﬁ(n) =r(n) — Wngn(fAL(n)) (22)



In (22), ®(n) is the N x N exponentially weighted deterministic autocorrelatiortninaestimate

for the input signalz(n) [16].

®(n) =Y AN""@(m)z” (m) (23)

m=0
Similarly, »(n) defines theV x 1 exponentially weighted deterministic cross-correlagstimate

vector between the output sign@ln) andx(n).

n

r(n) =) A" "y(m)a(m) (24)

m=0

W in (22) is again the weighting matrix utilized in the weigthté norm penalty of (7). We
define a new variabl@(n) for the right hand side of (22).

0(n) =r(n) — yYWsgn (ﬁ(n)) (25)
With the introduction off(n) the normal equation (22) transforms into a simpler form.
®(n)h(n) = 6(n) (26)

On a par with the development of standard RLS algorithm, thearrelation and cross-

correlation estimates have corresponding rank-one upstatations pertaining to them.
®(n) = \®(n—1)+z(n)z’ (n) (27)
r(n) =Ar(n—1)+y(n)x(n) (28)

The 6(n) also has a recursive update equation considering its defin{25) and (28). The

update equation fof(n) is calculated as
O(n) =X0(n—1)+y(n)x(n) — {7ngn(ﬁ(n)) — Ayngn(ﬂ(n — 1))} (29)

In a similar vein to the conventional RLS paradigm, we deaigradual iterative procedure for
finding the optimal least squares solution, instead of sglthe modified normal equations (26)

directly for ﬁ(n). The iterative solution should have the following struetur
h(n) = h(n—1) + Ah(n —1). (30)

Here, AIAz(n — 1) is an instantaneous corrective step applied to the estinettor, and it is
written as a function depending on the prior estimﬁ(a —1). To reach an update equation in

the form of (30), we need to convert (29) into a recursion ittty the prior estimatéAL(n —1)



terms on the right hand side. We assume that the signs of bhestanate values do not change
significantly in a single time step, hen@l(ﬁ(n)) ~ sgn(fz(n—l)). Therefore, we approximate
(29) with
0(n) = A0(n — 1) + y(n)&(n) + y(A — )Wsgn(h(n — 1)). (31)
The inverse of the autocorrelation matrix is given a specifime to further the analysis.
P(n) = &'(n) (32)
Using the matrix inversion lemma on (27), the recursive tupeate for the correlation matrix
estimate invers® (n) is performed using the Riccati equation for the RLS algamith
P(n) = A‘l{P(n — 1) — k(n)2" (n)P(n — 1)} (33)

Here, k(n) is the so-called gain vector defined as follows.
P(n—1)x(n)

K = T P — Do) (34)
With the advent of thé(n), the normal equation (26) becomes
h(n) = P(n)0(n). (35)

When we insert the recursions (27) and (31) into (35), theatgofbr the tab estimate assumes

the following structure.

h(n) =P(n —1)8(n — 1) — k(n)z" (n)P(n — 1)8(n — 1) + y(n)k(n) + (A N 1) X

{P(n — 1)Wsgn(h(n — 1)) — k(n)z” (n)P(n — 1)Wsgn (h(n — 1))} (36)
Apprehending thaﬁ(n —1)=P(n—-1)0(n — 1) from (35), the recursive update equation for

the tab vector estimate becomes as follows.

h(n) =h(n—1) + k‘(n){y(n) “h'(n— 1)m(n)} + ﬂ%) {IN - k(n)mT(n)} x
P(n— 1)ngn(fAL(n - 1)) (37)

Here,Iy is the N x N identity matrix. The update equation (37) finalizes the &sla@lgorithm
for the estimation of the sparse system tab vector. We callrtbvel adaptive sparsity based
algorithm as the “Weighted,-RLS” (¢;-WRLS). When we comparé -WRLS with the regular
RLS algorithm, we see that the main difference occurs in fate equation foﬁ(n), that is

in (37). The last term in (37) starting Wiﬂ/’l(%) constitutes the difference from the regular
RLS. If we setA =1 or v = 0, the /;-WRLS algorithm reduces to regular RLS.
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[1l. CHOOSING THE WEIGHTS £1-RRLS ALGORITHM

After the development of thé,-WRLS, we are confronted with deciding on the weighting
matrix W. One obvious choice for the weighting matrix is using thentdg matrix W = Iy. In
this case the penalty term in (7) equals the straightorm, |h(n)||; = Sr 4 |he(n)]. We will
denote the resulting algorithm &sRLS, as this is a non-weighted special case of/{Ré&/RLS.

An intelligent way to chose the weights is to aim at making Weighted/; norm have
values as similar as possible to thenorm, as/, norm is the true measure of sparseness. The
weighted/; norm value becomes similar % by choosing the weights inversely proportional
to the magnitude of the actual tab values of the system uraleigderation. Hence, the weights

are to be chosen as given below.

1
TR hk’ 7&0
wy, = ¢ ] (38)
oo, hk =0

However, the true system tab values are the unknowns thetiaelagystem strives to infer.
Therefore, we utilize the current adaptive tab estimaters®s as the weighting values. Hence,
the time-varying weights become as follows.

1
~he(n —1)| +e€
The resulting weighting matri¥V (n) is a diagonal matrix with thev,(n) values from (39) on

(39)

w(n)

the diagonal. The parameter> 0 in (39) is included in the denominator to enhance stability
in the case of a zero-valued instantaneous tab estimaté.Olnif is demonstrated that values
slightly less than the magnitude of the actual nonzero systh weights are proper choices
for e. By the insertion of the instantaneous weight values in (88) the tab estimate update

equation (37), the resulting weighted update equation igemras follows.

(n—Da(n)} + %%) {Ty = k(m)2" (n) } x

h(n—1
P(n— 1)s§n( (n ))
lh(n —1)|+¢€
The vector division operation in this equation denotes apkntomponentwise division. We

h(n) = h(n —1)+ k(n){y(n) ~h

(40)

will refer to the resulting adaptive algorithm #@s-Reweighted RLS 4 -RRLS), to underline

the connection to the reweightéd minimization approach as introduced in [10]. TheRRLS
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algorithm can also be developed using a log-sum penalty testead of the weighted, norm

penalty in (6). The log-sum penalty is calculated as follows

N-1
S~ tos((hu(m)] +¢) (41)
k=0

If we replace the; norm penalty term| Wh(n)||; in (6) with the log-sum cost given in (41) and
than do the minimization analysis, the resulting adaptigerithm is the/;-RRLS algorithm.
As stated in [10], establishing a connection with the logrquenalty is important. Utilizing the
log-sum cost term as a penalty is potentially more spaisdycing than the simplé; norm
[10]. Hence, we can develop tlie-RRLS algorithm via two different approaches. One approach
is to utilize a diagonal weighting matri¥V (n) constructed from the weight values (39), in the
¢1-WRLS update equation (37). A second approach is to emplogalm term as the sparsity-
inducing penalty in (6) and than do the minimization anayssing subgradients. The complete
¢1-RRLS algorithm is outlined in Algorithm 1.

The general;-WRLS algorithm is obtained simply by replacing the tab veaipdate step
(step 6) in Algorithm 1 with the general update equation giwve(37). The non-weightef-RLS
algorithm is obtained by settin§v = 1.

Algorithm 1 /;-Reweighted RLS4-RRLS) algorithm.

A, €6 z(n), y(n) > inputs
h(-1)=0, P(-1)=¢"Iy > initial values
1: for n:=0,1,2,... do > time recursion

2: kx(n) =P(n—1)x(n)
SOl wrape ey ey
4 &(n) =y(n) = h'(n - 1)z(n)

s P()= 1 [P(n— 1)~ k(ki(n)]
6: h(n) = h(n—1)+k(n)¢(n) + 7(%) {IN N k(n)mT(n)}P(n a 1)S|§Llr(l7<lh—(nl)—|41’)’z

7: end for > end of recursion
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V. COMPARISON WITH OTHER ONLINE ALGORITHMS

The developed;-WRLS algorithm presents a method for sparse system ideattdin which is
intuitively related to the standard RLS approach. [4] alensiders the weighted;-regularized
least-squares cost function as presented in (6). The auémoploy a subgradient-based iterative
minimizing approach, where the iterations simply update éstimate in the direction of the
current subgradient iterate. Since the update is simplysgiply time-varying constant times the
subgradient iterate, the algorithm as presented in [4] is8 BMS-like first order algorithm with
relatively slow convergence as stated in [3EWRLS presented in this paper on the other hand,
employs a different minimization approach which resultghe second-order update equation
(37).

[3] proposes TW and TNW Lasso approaches for real-time spsighal estimation, again
starting with the possibly weightef]-regularized least-squares cost function similar to the on
presented in (6). The online minimization for this cost flimie is realized by solving a succession
of convex optimization problems. A convex optimizationlplem is solved for each measurement
value. A simplified version of these algorithms which emgloyinimization with respect to only
one coordinate per iteration cycle is also developed, aigdigicalled as the Online Coordinate
Descent (OCD) algorithm. If;-WRLS, all coordinates of the estimate vector are updated at
every iteration cycle without resorting to solving a fullnv@x program per measurement.

[13] introduces the SPARLS algorithm for online sparse eystdentification. The problem
is again formulated as the convex program of minimizing theegularized least-squares cost
function. The optimization at each time point is reformathtas a maximum-likelihood (ML)
problem which is solved by an iterative EM algorithm. Henta, each measurement value
an iterative EM algorithm is run to completion. The updatepsbf /;-WRLS requires no
iterative algorithm per time index and is realized simply(BY). The SPARLS algorithm has a
computational complexity of)(N?) multiplications per time step [13]. Thg-WRLS algorithm
has this same general complexity, which coincides with thdtiplicational complexity of the
standard RLS algorithn?;-WRLS distinguishes from the standard RLS algorithm onlytha
last term of the final update step. Hence, it has the s@(@é®) complexity as the RLS algorithm.
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V. SIMULATION RESULTS

In this section, we compare the performance of the néyWRLS algorithms to the regular
RLS, regular LMS and other sparsity oriented adaptive @lgor. The first experiment considers
the tracking capabilities of;-RRLS, /;-RLS, RLS, RZA-LMS [9], ZA-LMS [9], ¢,-LMS [8]
and LMS. The sparse system to be identified has a total of &laat 4 of them are nonzero.
The positions and amplitudes of the nonzero tab weights bosen randomly. Input(n) is
assumed to be white and AWGN observation noise is added teytem output with an SNR
value of 20 dB. The parameters for the different algorith emosen as below:

e /1-RRLS, /;-RLS, and RLS:A = 0.99

e /1-RRLS: v =1.2,¢=0.1
(1-RLS: vy =3
e RZA-LMS, ZA-LMS, /,-LMS and LMS: i = 0.008
e RZA-LMS: p=8x107% 0 =10
e ZA-LMS: p=3x 1074, o = 10
o (-LMS: k=2x10"%, =5 Q=1

The X parameter for the RLS algorithm and theparameter for the LMS algorithm are chosen as
to result in roughly equal steady-state error values fosthadard RLS and LMS algorithms. The
RLS and LMS variants utilize these sath@andy values. The remaining parameters are found by
repeated trials as to cause the minimum steady-state errtndir respective adaptive algorithm.
The normalized mean square deviation (MSD) of the systemulegpresponse estimates versus
time iteration index are plotted in Fig. 1. The normalized MBS defined as

E{||h — h[3}

MSD = ——— ==
E{|[R]I3}

The MSD'’s for all the algorithms are averaged over a totalQ@ff funs. The/y-LMS and RZA-

(42)

LMS algorithms have almost equivalent performance, whsdio ibe expected from the similarity
between their respective tab estimate update equation®[8They have better convergence than
ZA-LMS. /1-RRLS and/;-RLS present convergence and steady-state error impraovsroger
the regular RLS algorithm, just as RZA-LM&,-LMS and ZA-LMS work better than the regular
LMS algorithm. It is interesting to note that the steadytestror for the/;-RRLS coincides with
the RZA-LMS, /,-LMS pair, and the steady-state error for theRLS algorithm coincides with
the ZA-LMS algorithm. The novel;-WRLS algorithms also maintain the faster convergence
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of RLS over LMS. Hence, thé,-WRLS algorithms do indeed present RLS counterparts to the
sparsity based LMS algorithms of [8] and [9].

The second experiment dwells on the effect of sparsity;eéRRLS and RLS performance. The
resulting learning curves for this experiment are presemterig.2. The system to be identified
is assumed to have a total of 64 coefficients. The number ateroncoefficients varies from 4
to 64, hence finally attaining a totally non-sparse systeminAhe first experiment, the positions
and amplitudes of the nonzero tabs are random variables. M\Wézervation noise with an SNR
of 20 dB is present. The algorithm parameters stay the sanme thg first experiment, except

varying ~ values are used for different sparsity levels.

L] gl-RRLS, and RLS)\ == 099
e (;-RRLS:y=[1.21.52.0253],¢=0.1

The results presented in Fig.2 demonstrate that RLS pesioceis independent from the system
sparsity. On the other hand,-RRLS steady-state error performance degrades with angecli
in sparsity. The/;-RRLS steady-state error is the least for the most spardemsysith only 4
nonzero tabs. The steady-state error gradually increaste aumber of nonzero terms increases.
Finally for a nonsparse system with 64 nonzero terms, thiopeance curves of,-RRLS and
straight RLS coincide.

In the third experiment, we analyze the effect of the chowre/fon the/,;-RRLS performance.
The system to be identified has a total of 64 coefficients wheree nonzero, and SNR is 20 dB.
The v parameter changes from 0 up to 3.5 in steps of O-RRLS with~y = 0 corresponds to
the standard RLS algorithm. As seen in Fig.3, the steadg-staor makes a dip around= 1.
However, the/;-RRLS performance is not overly sensitive to thevalue.

The fourth experiment compares the performance of {RBRLS algorithm to RLS under
different SNR values. The underlying system has again isgpubsponse length of 64 with 4
nonzero tabs. The learning curves for SNR values of 10, 20ar8040 dB are presented in
Fig.4. The\ value and they parameter for;-RRLS chosen as follows:

e /1-RRLS, /;-RLS and RLS:\ = 0.99

e (1-RRLS:~y = 3.5 for 10 dB,~ = 1.2 for 20 dB,y = 0.3 for 30 dB,~y = 0.1 for 40 dB

e (1-RLS: v =5 for 10 dB,~ = 3 for 20 dB,~y = 0.5 for 30 dB,~ = 0.3 for 40 dB
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TABLE |
OPTIMAL VALUES OF v VERSUS NOISE VARIANCE

o? ¢1-RRLS | ¢1-RLS | SPARLS
0.0001| 0.02 0.06 100
0.0005| 0.04 0.08 50
0.001 0.08 0.15 35
0.005 0.12 0.3 15

0.01 0.18 0.5 13
0.05 0.35 1 3

Thesey values are found by repeated trials as to minimize the qooreding steady-state error
value. As can be inferred from Fig.4,-RRLS and/;-RLS have better convergence and steady-
state properties than the regular RLS for all SNR values.

As a final experiment, we compare the performancé éVRLS to another recently proposed
adaptive sparse system identification algorithm, nameR3FS [13]. * For this experiment we
repeat the experimental setup as described in [13] in the-tnwvariant scenariof{; = 0). We
realize/,;-RRLS, /1-RLS, regular RLS and SPARLS. The input data is Gaussianaliséd with
length 500, and the sparse system to be identified has a folflOotabs where 5 of them are
nonzero. The simulation results are averaged over 50.tias RLS A\ = 1, and for the other
algorithms\ = 0.999. The optimaly values for the SPARLS are taken from [13], and the
values for/;-RRLS and/;-RLS are obtained via repeated simulations. Jhelues utilized for
different noise variance levelg are listed in Table 1. Fig. 5 demonstrates the final MSD of the
four algorithms versus SNR;-RRLS has the best performance among the four algorithms and
presents a gain of about 2 dB in MSD against SPARLSRLS performs better than RLS, but
is slightly inferior to SPARLS.

Fig. 6 displays the time variation of the MSD for the four aifuns when SNR is 30
dB. In consistence with the results of Fig. 5, theRRLS has the best performance among
the four algorithms. These results suggest that the propb6sRLS sparse system adaptive
algorithm outperforms both SPARLS and RLS, whereas the ighted/;-RLS variant is inferior

The authors of [13] have generously shared the code for $imiulations.
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to SPARLS but superior to the regular RLS.

VI. CONCLUSIONS

This paper introduced a novel approach for adaptive ideatin of sparse systems. RLS
algorithm is regularized by adding a weightédnorm penalty to the cost function. The update
equations for this new approach are developed by utiliziiggsadient analysis on the nondiffer-
entiable/; norm term. Two new adaptive algorithms result for two diéfer weighting scenarios
of the ¢/; norm, namely/;-RRLS and/;-RLS. Numerical simulations demonstrate that these
algorithms do indeed bring about better convergence aradigtstate performance than regular
RLS when the system to be identified is sparse. The Aewegularization based algorithms
improve on the standard RLS, just as the recent sparsityaegation based LMS algorithms

improve on the standard LMS algorithm in the sparse setting.
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Fig. 2. Performance of;-RRLS and RLS under different sparsity conditions.
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Fig. 4. Performance of;-RRLS, ¢;-RLS and RLS for different SNR values.
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