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Abstract

Group sparsity is one of the important signal priors for regularization
of inverse problems. Sparsity with group structure is encountered in nu-
merous applications. However, despite the abundance of sparsity based
adaptive algorithms, attempts at group sparse adaptive methods are very
scarce. In this paper we introduce novel Recursive Least Squares (RL-
S) adaptive algorithms regularized via penalty functions which promote
group sparsity. We present a new analytic approximation for ℓp,0 norm
to utilize it as a group sparse regularizer. Simulation results con�rm the
improved performance of the new group sparse algorithms over regular
and sparse RLS algorithms when group sparse structure is present.
Keywords: Adaptive �lter; RLS; sparsity; group sparsity; block structure;
mixed norm.

1 Introduction

Recursive Least Squares (RLS) algorithm is an important adaptive �ltering tech-
nique. The computational complexity of RLS is quadratic in �lter length per
iteration, and the complexity is higher than the �rst order adaptive methods
such as the Least Mean Square (LMS) algorithm. However, the relatively faster
convergence speed of RLS compared to the �rst order methods makes RLS still
an intriguing adaptive paradigm. Sparsity has been exploited as a signi�cant
prior condition in the LMS setting extensively. The proportionate adaptation
concept was introduced with the proportionate normalized least-mean-squares
(PNLMS) algorithm in the context of acoustic echo cancellation, where echo-
path impulse response is assumed to be sparse [1]. Proportionate adaptation
has been extended to selective partial update subband adaptive �lters in [2].
In [3] the authors propose LMS variants exploiting sparsity under a framework
of natural gradient algorithms. A modi�ed proportionate updating method has
been developed in [4]. In [5], the authors develop a robust NLMS algorithm
for sparse adaptive �ltering. Only recently there have been attempts at de-
veloping RLS variants which exploit the sparsity of the system or signal to be
estimated. Time-weighted and time-and norm-weighted schemes for sparsity-
aware recursive real-time �ltering are presented in [6]. In [7] the authors develop
a recursive ℓ1-regularized least squares algorithm (SPARLS) for sparse system
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identi�cation. SPARLS utilizes an expectation-maximization (EM) type algo-
rithm to minimize the ℓ1-regularized least squares cost function for streaming
data. Nonlinear system identi�cation using Volterra models where the Volterra
kernels are assumed to be of a sparse nature is considered in [8]. An approxima-
tion of the ℓ0-norm penalty is added to the RLS cost function for the Volterra
system, and a recursive estimator based on coordinate descent approach is devel-
oped. An algorithm for the application of general convex constraints onto RLS
was presented in [9] under the rubric of Convex Regularized RLS (CR-RLS).
Sparsity aware variants of CR-RLS regularized with ℓ1 norm and an analytic
approximation to ℓ0 norm have been proposed in [9, 10].

Another useful prior condition related to the sparsity is group or block s-
parsity. In the traditional notion of sparsity, the few nonzero coe�cients occur
randomly in a non-structured manner along the signal support. In group s-
parsity, these few nonzero (or signi�cant) coe�cients assemble in clusters in a
structured manner. Group sparsity �nds usage in a wide range of application-
s including source localization [11], image denoising [12], image classi�cation
[13], network inference [14] and cognitive spectrum sensing [15]. Literature on
adaptive algorithms bene�ting from group sparsity on the other hand is very
scarce. A group sparse LMS algorithm is developed in [16] using mixed ℓ2,1 and
reweighted ℓ2,1 norms as the convex penalties. An online, homotophy based
solution for the minimization of the RLS cost function penalized by the ℓ∞,1

norm is developed in [17].
In this paper, we develop novel group sparsity cognizant adaptive algorithms

by using mixed ℓp,1 norms and also analytic approximations to the mixed ℓp,0
pseudo-norm. These group sparsity enhancing functions are utilized in the CR-
RLS framework to develop the group sparse adaptive algorithms. This paper
also proposes a novel exponential approximation to the mixed ℓp,0 pseudo-norm.
As part of the developed algorithms, the subgradients for the various group s-
parsity promoting functions are calculated. These group sparsity promoting
penalties for which the subgradients are calculated include the ℓ2,1 and ℓ∞,1

norms and the novel exponential approximations for the ℓp,0 pseudo-norm. Sim-
ulations show that the resulting novel group sparse RLS algorithms are e�ective
and robust online solvers for the group sparse system identi�cation problem.
The paper is organized as follows. Section 2 presents a recap on the CR-RLS
scheme. In Section 3, �rst we introduce the group sparsity concept and some
necessary tools. Afterwards, we develop the novel approximation for ℓp,0 norm.
In Section 4 we introduce the new group sparse RLS algorithms after calculat-
ing the subgradients for the various group sparsity based regularizing functions.
Section 5 presents the simulation results which verify the superiority of the
group sparse adaptive algorithms when applied in a setting where group sparse
signal structure is present.
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2 CR-RLS Algorithm Prior Art

We consider the supervised system identi�cation setting with the linear input-
output relation.

yn = ĥTxn + vn (1)

yn is the noisy output signal, ĥ = [h0, h1, . . . , hN−1]
T ∈ RN is the actual system

impulse response for the FIR system to be identi�ed. xn = [xn, xn−1, . . . xn−N+1]
T ∈

RN is the input vector at time n. vn is the additive noise term corrupting the
output of the system. Adaptive system identi�cation methods estimate the sys-
tem response ĥ sequentially as the input and output signals stream in. In [9],
the least-squares cost with exponential forgetting factor λ was regularized by a
convex penalty, and the result was considered as the instantaneous cost function
Jn(h) which should be minimized as a function of the variable h.

Jn(h) =
1

2

n∑
m=0

λn−m|ym − hTxm|2 + γnf(h) (2)

Here f : RN → R is a convex, not necessarily di�erentiable function. γn > 0
is a possibly time-varying regularization parameter, which governs a tradeof-
f between the approximation error and the penalty function. Let ĥn denote
the instantaneous minimizer of the regularized cost function Jn(h), that is

ĥn = argmin
h

Jn(h). A recursive algorithm in the same vein as RLS for the

approximate calculation of ĥn was developed in [9] under the title of CR-RLS.
The coe�cient vector update equation is given as

hn = hn−1 + ξnPnxn − γn−1(1− λ)Pn∇Sf(hn−1). (3)

Pn is the inverse of the deterministic autocorrelation matrix estimate for the
input signal. ∇Sf(ν) denotes a subgradient of f at ν [18]. ξn = yn−hT

n−1xn is
the a priori estimation error. Let us assume that an upper bound for the convex
constraint is given in the form ρ>f(ĥ). ρ is a constant which quanti�es the a

priori knowledge about the true system impulse response ĥ. In [9] a closed form
formula for selecting the regularization parameter in the case of white input is
given as follows:

γn = (γ′
n)+ (4)

where

γ′
n = 2

tr(Pn)
N

(
f(hn)− ρ

)
+∇Sf(hn)

TPnϵ
′
n

∥Pn∇Sf(hn)∥22
. (5)

Here, tr(·) is the trace operator for the argument matrix. In (4) (x)+ =

max(0, x), and in (5) ϵ′n = hn − h̃n. Furthermore, h̃n is the instantaneous sys-
tem estimate produced by the standard, non-regularized RLS algorithm [9]. The

term h̃n is updated by the standard RLS equation given as h̃n = h̃n−1+ξnPnxn.
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An additional observation which was not considered in [9] is that the second
term in the numerator of (5) is in general much smaller than the �rst term in
magnitude. Hence, γ′

n in (5) can be approximated as

γ′
n ≈ 2

tr(Pn)
N

(
f(hn)− ρ

)
∥Pn∇Sf(hn)∥22

. (6)

For the white input case, the selection of γn as given in (4) results in at least
as good performance as the regular RLS. This formula also avoids the ad hoc
regularization parameter selection process for di�erent experimental setups. In
the convex-regularized RLS algorithm as developed in [9] and re�ned in this
paper, the degree of regularization is determined by the time-dependent vari-
able γn. This update procedure calculates the regularization term from the
data on-the-�y. Hence, there is no need for cross-validation to pre-determine a
regularization parameter suitable for the data in hand.

3 Group Sparsity and Mixed Norms

In some applications it is the case that there is a group or block structure
to the coe�cient vector sought. The group structure means that the nonzero
coe�cient values occur in groups rather than being distributed randomly over
the whole vector. Convex optimization algorithms such as Group Lasso [19] and
Group Adaptive Lasso [20], and greedy algorithms such as Block Orthogonal
Matching Pursuit (BOMP) [21] solve the group sparse representation problem.
The superiority of using group Lasso over standard Lasso for group structured
sparse coding in batch mode has been established [22, 23]. Encouraged by the
batch group sparse representation algorithms, in this paper we develop group
structured algorithms for block-sparsity aware adaptive �ltering.

Some group sparsity inducing penalty functions utilized in the literature
include mixed ℓ2,1 [19, 16] and reweighted ℓ2,1 norms [16], and smoothed ℓ2,0
pseudo-norm [11]. Here, we will formalize a novel group structure penalty, based
on the exponential approximation of ℓ0 pseudo-norm [24]. We assume that the
group structure for the vector h ∈ RN is given by a group partition {Gi}Gi=1 of
the index set N = {0, 1, . . . , N − 1} full�lling the following [16]:

G∪
i=1

Gi = N ,Gi

∩
Gj = ∅ for i ̸= j. (7)

Hence, there are a total of G groups, and we do not allow group overlaps. We
assume that the group structure is a priori known. We establish a di�erent
notation compared to [16] in presenting the group structure of vectors. We
denote with hGi ∈ RN the vector which is obtained by zeroing all values of the
coe�cient vector h except at the positions included in the set Gi

{hGi}k =

{
hk if k ∈ Gi;

0 if k /∈ Gi.
∀k = 0, . . . , N − 1 (8)

4



Hence, the overall vector h is decomposed in the following manner:

h =
G∑
i=1

hGi . (9)

The mixed ℓp,q (also called as the ℓp/ℓq ) norm corresponding to this group
structure can be calculated as

∥h∥p,q =
( G∑
i=1

(
∥hGi∥p

)q) 1
q

=

(
G∑
i=1

(∑
k∈Gi

hp
k

) q
p

) 1
q

. (10)

The ℓp,q norm is known to be convex when p, q>1 [25].
The actual count for group sparsity is the mixed pseudo-norm ∥h∥p,0 de�ned

as

∥h∥p,0 =
G∑
i=1

I
(
∥hGi∥p

)
. (11)

I(·) is the indicator function producing one if the argument is non-zero and zero
otherwise. However, this exact marker of group sparse structure is non-convex,
and hence subgradient analysis is not applicable. One idea is to replace this
non-convex penalty function ∥h∥p,0 in (11) with its convex relaxation ∥h∥p,1,
just as the ℓ0 norm is replaced with the ℓ1 norm in the Basis Pursuit [26] (or
Lasso [27]) formulations. In ℓp,1, if p is chosen as p = 1 the mixed-norm reduces
to the regular ℓ1 norm. The two most popular ℓp,1 mixed-norms used in practice
to enforce structured sparsity are ℓ2,1 and ℓ∞,1 [28].

In [16], the ℓ2,1 and the reweighted ℓ2,1 norms have been utilized as promoters
of block sparsity. From (10), the ℓ2,1 norm can be calculated as follows:

∥h∥2,1 =

G∑
i=1

∥hGi∥2 =

G∑
i=1

(∑
k∈Gi

h2
k

) 1
2

. (12)

The reweighted ℓ2,1 norm utilized in [16] is formulated in an analogous fashion
to the reweighted ℓ1 norm employed by Candès et al. in [29].

∥h∥2,1r =
G∑
i=1

ri∥hGi∥2 (13)

The positive valued reweighting parameters ri are chosen as ri =
1

∥hGi∥2 + δ
[16], where δ is a small positive constant.

The ℓ∞,1 norm has been used in [25] as a penalty function for simultaneous
sparse signal approximation. The ℓ∞,1 norm is called as the relaxed norm, and
it is utilized as a convex substitute for the row-ℓ0 quasi-norm of a matrix. An
online homotophy based algorithm for solving the ℓ∞,1 regularized Lasso prob-
lem is developed in [17]. Gradient methods for optimization of ℓ∞,1 regularized
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loss functions have been developed in [30, 31]. In both papers the introduced
algorithms have been applied to multi-task sparse learning problems. Using
the notation developed in this section, ℓ∞,1 norm is calculated in the following
manner.

∥h∥∞,1 =
G∑
i=1

∥hGi∥∞ =
G∑
i=1

max
k∈Gi

|hk| (14)

Another way to replace the non-convex group sparsity count ℓp,0 of (11) would
be by introducing convex approximations to this function. In [11], Gaussian
functions were utilized to approximate the non-convex ∥h∥2,0. In this paper,
we propose instead a novel approximation ∥h∥p,0β based on the exponential
function. An exponential approximation to the ℓ0 pseudo-norm was formulated
in [24]. Here, we introduce the below given novel approximation for the ℓp,0.

∥h∥p,0 ≈ ∥h∥p,0β = G−
G∑
i=1

e−β∥hGi
∥p (15)

In (15), β is a proper positive constant, and limβ→∞∥h∥p,0β = ∥h∥p,0.
Equipped with these results, we can de�ne various group sparsity promoting

functions which can be utilized as the f(hn) of (2), and we can also calculate
their subgradients ∇Sf(hn). Some viable choices for ∇Sf(hn) are discussed in
the following section.

4 Group Sparse RLS Algorithms

In this section we develop new group sparsity cognizant RLS algorithms by
employing the group sparsity inducing mixed norms introduced in Section 3.
We insert these mixed norms as the regularizing penalty functions into the cost
function (2) and into the update equation (3).

4.1 ℓ2,1 Norm

One choice for f(·) to be used in (2) is the ℓ2,1 norm with f(h) = ∥h∥2,1.
The function ∥h∥2,1 as given in (12) is di�erentiable everywhere, except when
∥hGi∥2 = 0 or equivalently when hGi is the all zero vector 0 ∈ RN . At the point
hGi = 0, the subdi�erential includes the all zero vector as a legitimate subgra-
dient, that is 0 ∈ ∂∥hGi∥2 when hGi = 0. Using these results, a subgradient for
f(hn) = ∥hn∥2,1 can be written as follows.

∇S
{
∥hn∥2,1

}
=

G∑
i=1

∇S∥hn,Gi∥2 (16)

where,

∇S∥hn,Gi
∥2 =


hn,Gi

∥hn,Gi∥2
, hGi ̸= 0;

0, hGi
= 0.

(17)
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In [16], not this exact expression but an approximation for the subgradient is
used. This approximation is given as,

∇S
{
∥hn∥2,1

}
≈

G∑
i=1

hn,Gi

∥hn,Gi
∥2 + δ

(18)

where again δ is a small, positive constant.
A similar choice for f(h) is the reweighted norm f(h) = ∥h∥2,1r (13). Using

the results for ℓ2,1 norm, a subgradient of the reweighted norm can be written
as follows:

∇S
{
∥hn∥2,1r

}
=

G∑
i=1

rn,i∇S∥hn,Gi∥2. (19)

Here, ∇S∥hn,Gi∥2 is as de�ned in (17). The approximation for this subgradient
used in [16] is,

∇S
{
∥hn∥2,1r

}
≈

G∑
i=1

rn,i
hn,Gi

∥hn,Gi∥2 + δ
. (20)

4.2 ℓ∞,1 Norm

One other popular ℓp,1 norm is the ℓ∞,1 norm with p = ∞ [25, 28, 17, 31, 30].
In [25] the subdi�erential for the row-ℓ1 matrix norm is calculated. We follow a
similar procedure to determine the subdi�erential of ℓ∞,1 norm for vectors. Let
us �rst consider the simpler ℓ∞ norm which does not entail any group structure.
The subdi�ential of ℓ∞ is known to be [25]

∂∥h∥∞ =

{
{g : ∥g∥161} if h = 0

conv{sgn(hk)ek : |hk| = maxj |hj |} otherwise.
(21)

Here, conv denotes the convex hull of the union of the argument vectors. Fur-
thermore, ek ∈ RN , k = 0 . . . N − 1 denote the canonical basis vectors, and
sgn(·) possibly applied onto a vector denotes the elementwise sign function.

The ℓ∞,1 norm as de�ned in (14) is separable with ∥h∥∞,1 =
∑G

i=1∥hGi∥∞.
The inner product is also separable on the group partition {Gi}Gi=1. Hence,
the subdi�erential ∂∥h∥∞,1 is simply found by applying the ℓ∞ subdi�erential
∂∥h∥∞ in (21) to each group partition vector hGi separately. Let∇S

{
∥h∥∞,1

}
∈

∂∥h∥∞,1 denote a subgradient of the ℓ∞,1 norm at h. The subgradient vector
should satisfy the following:

∇S
{
∥h∥∞,1

}
Gi

∈

{
{g : ∥g∥161} if hGi = 0

conv{sgn(hGi,k)ek : |hGi,k| = maxj |hGi,j |} otherwise.

(22)
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4.3 ℓp,0β Approximations

We can also use the convex approximations ∥h∥p,0β as the group sparse penalty
f(h). A subgradient for ∥h∥p,0β in (15) can be calculated using the chain rule
for subgradient [18]

∇S
{
∥h∥p,0β

}
=

G∑
i=1

β∇S
{
∥hGi

∥p
}
e−β∥hGi

∥p . (23)

The product of the two column vectors, ∇S
{
∥hGi∥p

}
and e−β∥hGi

∥p in (23), is

just an elementwise multiplication. The exponential term e−β∥hGi
∥p in (23) can

be approximated by its �rst order Taylor series expansion as given below:

e−β|x| ≈

1− β|x|, |x|6 1

β
;

0, elsewhere.
(24)

The expansion in (24) can be more succinctly stated as e−β|x| ≈
(
1 − β|x|

)
+
.

Substituting this expression into (23), we obtain the following result for the
subgradient:

∇S
{
∥h∥p,0β

}
≈

G∑
i=1

β∇S
{
∥hGi∥p

}(
1− β∥hGi∥p

)
+
. (25)

In this paper we will consider the two cases with p = 1 and p = 2. The
subgradients for the corresponding penalty functions are calculated from (25).
When p = 1, that is when f(hn) = ∥hn∥1,0β , a corresponding subgradient is
calculated in the following manner:

∇S
{
∥hn∥1,0β

}
=

G∑
i=1

β sgn
(
hn,Gi

)(
1− β∥hn,Gi∥1

)
+
. (26)

For p = 2, f(hn) = ∥hn∥2,0β and a matching subgradient can be computed as
follows:

∇S
{
∥hn∥2,0β

}
=

G∑
i=1

β∇S∥hn,Gi∥2
(
1− β∥hn,Gi∥2

)
+

≈
G∑
i=1

β

∥hn,Gi∥2 + δ
hn,Gi

(
1− β∥hn,Gi∥2

)
+
.

(27)

4.4 Group Sparse Adaptive Algorithms

We will employ the group sparsity inducing penalty functions with their corre-
sponding subgradients as given in (16), (22), (26) and (27) inside the update
equation (3). We will call the resulting group sparsifying RLS algorithms as
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Algorithm 1 ℓ1,0-Group RLS algorithm for adaptive �ltering with structured
sparsity.

λ, xn, yn, h−1 = 0, P−1 = δ−1IN , group partition {Gi}Gi=1, ρ such that
∥h∥1,06ρ ◃ inputs

1: for n := 0, 1, 2, . . . do ◃ time recursion

2: kn =
Pn−1xn

λ+ xT
nPn−1xn

◃ gain vector

3: ξn = yn − hT
n−1xn ◃ a priori error

4: Pn =
1

λ

[
Pn−1 − knx

T
nPn−1

]
5: γn−1 =

(
2 tr(Pn−1)

(
∥hn−1∥1,0 − ρ

)
N
∣∣∣∣Pn−1

∑G
i=1 β sgn

(
hn−1,Gi

)(
1− β∥hn−1,Gi∥1

)
+

∣∣∣∣2
2

)
+

◃

regularization parameter

6: hn = hn−1 + ξnkn − γn−1(1 − λ)Pn

(∑G
i=1 β sgn(hn−1,Gi)(1 −

β∥hn−1,Gi∥1)+
)

7: end for ◃ end of recursion

ℓ2,1-Group RLS (ℓ2,1-GRLS), ℓ∞,1-GRLS, ℓ1,0-GRLS and ℓ2,0-GRLS, respec-
tively. The ℓ1,0-GRLS algorithm resulting from the use of (26) is outlined in
Algorithm 1. The realization for the other algorithms are obtained by replac-
ing the subgradient vector with the corresponding subgradient function of the
respective algorithm.

We have also implemented the group sparse adaptive algorithm using (19) as
the subgradient vector. This variant can be appropriately called as ℓ2,1r -GRLS.
When γn is found by repeated trials as an optimized value, the algorithm with
(19) performs on par with the ℓp,0 methods. However, when (4) is used to
calculate γn with (19) as the subgradient vector, the performance of ℓ2,1r -GRLS
falls in between RLS and ℓ2,1-GRLS. The γn values calculated using (4) are too
conservative in this scenario, and they are small compared to the optimal γ value
which would result in best steady-state performance. Hence, we have omitted
the results of the ℓ2,1r -GRLS which uses (19).

5 Simulation Results

We present results depicting the performance of the introduced algorithms in
an adaptive group sparse system identi�cation setting. The system impulse
response h has a total of N = 64 coe�cients. The impulse response is assumed
to have a known group structure of G = 16 blocks with 4 coe�cients in each
block. The impulse response is generated as to have only K active blocks out of
the total of G = 16. Hence, the total number of nonzero coe�cients is S = 4K.
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The K active groups are chosen randomly, and the coe�cients in the active
groups assume values from an i.i.d. N (0, 1

S ) distribution. The input signal xn

takes its values from a zero-mean, unit variance normal distribution N (0, 1).
A representative snapshot of the impulse response for the group sparse system
with K = 4 is presented in Fig.1.

The observation noise is vn ∼ N (0, σ2), where σ2 takes di�ering values.
Signal-to-noise ratio (SNR) is de�ned as SNR:=E

{
∥yo∥22

}
/σ2, where yo denotes

the noise-free output signal. The main performance measure is the average mean

squared deviation, which can be de�ned as MSD:=
E
{
∥hn − ĥ∥22

}
E
{
∥ĥ∥22

} . The real-

ized novel group sparse RLS algorithms include ℓ2,1-GRLS (16), ℓ∞,1-GRLS
(22), ℓ1,0-GRLS (26) and ℓ2,0-GRLS (27). We have also implemented the spar-
sity based CR-RLS algorithms ℓ1-RLS and ℓ0-RLS as introduced in [9]. All of
these CR-RLS based algorithms are implemented with automated γn selection
employing (4) and (6), hence there is no need to tweak the regularization param-
eter γ. For all algorithms λ = 0.995, and the results for each setting is averaged
over 500 independent realizations. The β values to use are chosen after repeated
simulations, as to �nd the values which result in minimum steady-state MSD for
their respective algorithms. The utilized β values in the case of σ2 = 0.01 are,
β = 50 for ℓ0-RLS, β = 4 for ℓ1,0-GRLS and β = 7 for ℓ2,0-GRLS. For σ

2 = 0.1
we chose, β = 20 for ℓ0-RLS, β = 3 for ℓ1,0-GRLS and β = 5 for ℓ2,0-GRLS.
Other parameters are δ = 10−5 for ℓ2,1-GRLS and ℓ2,0-GRLS.

5.1 Initial results and dependence on block-sparsity

In the �rst experiment, we realize the algorithms for a block-sparsity value
K = 1 and noise variance values σ2 = 0.01 and σ2 = 0.1. σ2 = 0.01 translates
to an SNR of roughly 20 dB, whereas σ2 = 0.1 results in an SNR of about 10 dB.
The ρ value is assumed to be the true value of f(ĥ), ρ = f(ĥ). Hence, for ℓ2,1-

GRLS ρ = ∥ĥ∥2,1, for ℓ∞,1-GRLS ρ = ∥ĥ∥∞,1, for ℓ1,0-GRLS and ℓ2,0-GRLS

ρ = ∥ĥ∥p,0 = K = 1, for ℓ1-RLS ρ = ∥ĥ∥1 and for ℓ0-RLS ρ = ∥ĥ∥0 = S = 4.
The MSD curves for the two di�erent SNR values are presented in Figs. 2 and

0 10 20 30 40 50 60 70
−0.4

−0.2

0

0.2

0.4

Figure 1: Typical group sparse impulse response used in the simulations with
K = 4.
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3. Secondly, we repeat the setup of the �rst experiment, but this time for a
block sparsity value K = 2. All the other parameters are exactly the same as
the earlier setup. We did not change the β values depending on this change
of the block sparsity value K. The MSD curves pertaining to the two SNR
values are given in Figs. 4 and 5. Figs. 2, 3, 4 and 5 demonstrate that
the novel block-sparsity cognizant algorithms provide improved performance
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Figure 2: Performance of di�erent algorithms for K = 1 and σ2 = 0.1.
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Figure 3: Performance of di�erent algorithms for K = 1 and σ2 = 0.01.
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when compared to the algorithms which only exploit sparsity. The ℓ2,1-GRLS
algorithm presents performance superior to the ℓ1-RLS algorithm. The ℓ∞,1-
GRLS on the other hand performs very close but slightly worse than the ℓ1-
RLS. All three algorithms are inferior to the ℓ0-RLS. The ℓ1,0-GRLS and ℓ2,0-
GRLS algorithms which introduce a novel approximation for the ℓp,0 norm, have
the best performance. For all K and SNR values the ℓp,0-GRLS algorithms
outperform the ℓ0-RLS which only utilizes the sparsity prior.
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Figure 4: Performance of di�erent algorithms for K = 2 and σ2 = 0.1.
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Figure 5: Performance of di�erent algorithms for K = 2 and σ2 = 0.01.
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We have also implemented the previous experiments for additional block
sparsity values. Tables 1 and 2 detail the average �nal MSD values for the
various algorithms at the end of 2000 iterations. The group sparsity values vary
as K = 1, 2, 4 and 16, where K = 16 corresponds to a system with fully active
(non-sparse) impulse response. The results indicate that just like the sparse
algorithms, e.g. ℓ0-RLS, the novel group sparse algorithms do also naturally
approach the standard RLS algorithm as the group sparsity vanishes. The
results indicate that the novel ℓp,0 approximations exploit the group structure
better than the ℓ2,1 and ℓ∞,1 norms.

5.2 Behavior of regularization parameter γn

The degree of regularization in the studied CR-RLS algorithms is determined
by the time-varying variable γn. Parameter γn is updated on-the-�y as the data
�ows in. Figs. 6 and 7 present the time evolution of the regularization parameter
for block-sparsity valueK = 1 and noise variance values σ2 = 0.01 and σ2 = 0.1.
These �gures show that the regularization parameters γn converge to particular
steady-state constants γ with time. These constants are suitable regularization
parameters for the stationary noisy data and for the particular algorithm under
consideration. We have also realized a select few of the CR-RLS algorithms
using these steady-state γ values. Fig. 8 presents the MSD curves for ℓ1-RLS,
ℓ0-RLS and ℓ2,0-GRLS algorithms using two approaches. First, the algorithms
are run with time-varying, learned regularization parameter, γn. Secondly, the
three algorithms are run using a constant regularization parameter, where the
constant parameters γ are acquired from Fig. 6 as the steady-state values of
the γn curves. The results in Fig. 8 suggest that the γn learning scheme works
well, and the adaptive γn values converge to a constant γ which is suitable for
the noisy data under consideration.

5.3 Inexact knowledge of f(ĥ)

In this subsection, we study the non-ideal case ρ > f(ĥ), where again the param-

eter ρ quanti�es our prior knowledge about the true system impulse response ĥ.
In this subsection we assume the prior knowledge of the f(ĥ) value is inexact,
and a coarse approximation is used. First, we present the results when the pa-
rameter ρ is non-ideally chosen as twice the value of the exact parameter f(ĥ).

Figs. 9 and 10 show the MSD curves for the case ρ = 2× f(ĥ). From these �g-
ures it is seen that the ℓ1-RLS, ℓ∞,1-GRLS and ℓ2,1-GRLS algorithms are very

sensitive to the use of inexact estimates for f(ĥ). At twice the exact value, the
steady-state MSD for these variants deteriorate and converge to the result for
the non-regularized standard RLS. On the other hand, the ℓ0-RLS ℓ1,0-GRLS
and ℓ2,0-GRLS algorithms are quite insensitive to the use of imperfect estimates

for f(ĥ). In both �gures the performances of the ℓ1,0-GRLS and ℓ2,0-GRLS for

the case ρ = 2 × f(ĥ), are quite similar to their performance when the exact
parameter value was used. We have also realized simulations for other unideal
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cases of ρ, and the corresponding steady-state MSD results are listed in Tables
3 and 4. Table 3 is for SNR=10dB, and Table 4 is for SNR=20dB. The unideal
choices for ρ range from ρ = 2×f(ĥ) up to ρ = 16×f(ĥ). The results in Tables
3 and 4 further a�rm that the ℓ0-RLS ℓ1,0-GRLS and ℓ2,0-GRLS algorithms are
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Figure 6: Time dependence of the regularization parameter γn for di�erent
algorithms, K = 1 and σ2 = 0.1.
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Figure 7: Time dependence of the regularization parameter γn for di�erent
algorithms, K = 1 and σ2 = 0.01.
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much more robust to inexact estimates of f(ĥ) when compared to the ℓ1-RLS,
ℓ∞,1-GRLS and ℓ2,1-GRLS algorithms.

5.4 Varying length of impulse response ĥ

Here, we study the performance of the group sparse adaptive algorithms with
respect to the length of the underlying true impulse response ĥ. Simulations
for impulse response lengths ranging from 64 to 512 have been realized. The
results for these simulations are listed in the Tables 5 and 6. In these tables,
steady-state MSD for di�erent impulse response length values N for constant
sparsity (K = 1) are studied. Tables 5 and 6 show that the group sparse RLS
algorithms exploit the group sparsity prior e�ectively for these longer impulse
response lengths.

6 Conclusions

We have developed RLS algorithms which employ a priori knowledge of group
sparsity for the underlying system to be identi�ed. We have introduced a novel
convex approximation for the ℓp,0 pseudo-norms based on a similar approxima-
tion of the ℓ0 pseudo-norm. The introduced group sparse RLS algorithms utilize
these ℓp,0 approximations and the convex ℓ2,1 and ℓ∞,1 norms as regularizing
functions. The simulations show that the group sparse algorithms, equipped
with the automated regularizing parameter selection, exploit the group sparse
prior e�ciently. The group sparse algorithms in general perform better than the
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Figure 8: Performance of di�erent algorithms with constant γ and time-varying
γn, K = 1 and σ2 = 0.1.
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regular and sparse RLS algorithms under the group sparse setting. The group
sparse algorithms which utilize the novel approximation for ℓp,0 norm perform
better than the convex relaxation based group sparse algorithms, which utilize
the ℓ2,1 and ℓ∞,1 norms. The ℓp,0 based RLS algorithms are also much more
robust to inexact estimates of the group sparsity prior when compared to the
ℓp,1 based algorithms. Additionally, the performance of all the group spare
algorithms converge naturally to the regular RLS as the group sparsity prior
vanishes.
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Table 1: Steady-state MSD for di�erent group sparsity values with σ2 = 0.1.

σ2 = 0.1 K = 1 K = 2 K = 4 K = 16

RLS 1.7× 10−2 1.7× 10−2 1.7× 10−2 1.7× 10−2

ℓ1-RLS 8.5× 10−3 1.1× 10−2 1.3× 10−2 1.7× 10−2

ℓ2,1-GRLS 7.2× 10−3 9.8× 10−3 1.2× 10−2 1.7× 10−2

ℓ∞,1-GRLS 9.1× 10−3 1.2× 10−3 1.4× 10−2 1.7× 10−2

ℓ0-RLS 2.1× 10−3 3.8× 10−3 7.1× 10−3 1.7× 10−2

ℓ1,0-GRLS 1.5× 10−3 2.3× 10−3 5.1× 10−3 1.7× 10−2

ℓ2,0-GRLS 1.2× 10−3 1.8× 10−3 5.7× 10−3 1.7× 10−2
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Table 2: Steady-state MSD for di�erent group sparsity values with σ2 = 0.01.

σ2 = 0.01 K = 1 K = 2 K = 4 K = 16

RLS 1.7× 10−3 1.7× 10−3 1.7× 10−3 1.7× 10−3

ℓ1-RLS 1.0× 10−3 1.1× 10−3 1.4× 10−3 1.7× 10−3

ℓ2,1-GRLS 8.5× 10−4 1.0× 10−3 1.3× 10−3 1.7× 10−3

ℓ∞,1-GRLS 1.1× 10−3 1.1× 10−3 1.4× 10−3 1.7× 10−3

ℓ0-RLS 2.0× 10−4 3.1× 10−4 6.0× 10−4 1.7× 10−3

ℓ1,0-GRLS 1.5× 10−4 1.7× 10−4 7.1× 10−4 1.7× 10−3

ℓ2,0-GRLS 1.1× 10−4 1.4× 10−4 7.6× 10−4 1.7× 10−3

Table 3: Steady-state MSD for the case when there is inexact knowledge of
f(ĥ), σ2 = 0.1.

σ2 = 0.1 ρ = f(ĥ) ρ = 2× f(ĥ) ρ = 4× f(ĥ) ρ = 8× f(ĥ) ρ = 12× f(ĥ) ρ = 16× f(ĥ)

RLS 1.7× 10−2 1.7× 10−2 1.7× 10−2 1.7× 10−2 1.7× 10−2 1.7× 10−2

ℓ1-RLS 8.5× 10−3 1.7× 10−2 1.7× 10−2 1.7× 10−2 1.7× 10−2 1.7× 10−2

ℓ2,1-GRLS 7.2× 10−3 1.7× 10−2 1.7× 10−2 1.7× 10−2 1.7× 10−2 1.7× 10−2

ℓ∞,1-GRLS 9.1× 10−3 1.7× 10−2 1.7× 10−2 1.7× 10−2 1.7× 10−2 1.7× 10−2

ℓ0-RLS 2.1× 10−3 2.4× 10−3 2.7× 10−3 3.6× 10−3 6.7× 10−3 1.7× 10−2

ℓ1,0-GRLS 1.5× 10−3 1.7× 10−3 1.9× 10−3 2.0× 10−3 3.5× 10−3 1.7× 10−2

ℓ2,0-GRLS 1.2× 10−3 1.3× 10−3 1.4× 10−3 1.5× 10−3 2.2× 10−3 1.7× 10−2

Table 4: Steady-state MSD for the case when there is inexact knowledge of
f(ĥ), σ2 = 0.01.

σ2 = 0.1 ρ = f(ĥ) ρ = 2× f(ĥ) ρ = 4× f(ĥ) ρ = 8× f(ĥ) ρ = 12× f(ĥ) ρ = 16× f(ĥ)

RLS 1.7× 10−3 1.7× 10−3 1.7× 10−3 1.7× 10−3 1.7× 10−3 1.7× 10−3

ℓ1-RLS 1.0× 10−3 1.7× 10−3 1.7× 10−3 1.7× 10−3 1.7× 10−3 1.7× 10−3

ℓ2,1-GRLS 8.5× 10−4 1.7× 10−3 1.7× 10−3 1.7× 10−3 1.7× 10−3 1.7× 10−3

ℓ∞,1-GRLS 1.1× 10−3 1.7× 10−3 1.7× 10−3 1.7× 10−3 1.7× 10−3 1.7× 10−3

ℓ0-RLS 2.0× 10−4 2.1× 10−4 2.3× 10−4 3.1× 10−4 6.1× 10−4 1.7× 10−3

ℓ1,0-GRLS 1.5× 10−4 1.5× 10−4 1.6× 10−4 1.6× 10−4 1.8× 10−4 1.7× 10−3

ℓ2,0-GRLS 1.1× 10−4 1.4× 10−4 1.5× 10−4 1.6× 10−4 1.8× 10−4 1.7× 10−3
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Table 5: Steady-state MSD for di�erent impulse response length values N ,
σ2 = 0.1.

σ2 = 0.1 N = 64 N = 128 N = 192 N = 256 N = 320 N = 384 N = 448 N = 512

RLS 1.7× 10−2 3.6× 10−2 5.5× 10−2 7.5× 10−2 9.7× 10−2 1.2× 10−1 1.4× 10−1 1.5× 10−1

ℓ1-RLS 8.5× 10−3 1.8× 10−2 2.8× 10−2 3.7× 10−2 4.8× 10−2 6.0× 10−2 7.0× 10−2 8.0× 10−2

ℓ2,1-GRLS 7.2× 10−3 1.5× 10−2 2.1× 10−2 2.8× 10−2 3.5× 10−2 4.3× 10−2 4.9× 10−2 5.6× 10−2

ℓ∞,1-GRLS 9.1× 10−3 2.0× 10−2 3.0× 10−2 4.1× 10−2 5.4× 10−2 6.7× 10−2 7.8× 10−2 9.0× 10−2

ℓ0-RLS 2.1× 10−3 2.8× 10−3 3.8× 10−3 5.6× 10−3 8.2× 10−3 1.0× 10−2 1.5× 10−2 2.0× 10−2

ℓ1,0-GRLS 1.5× 10−3 1.8× 10−3 1.9× 10−3 2.6× 10−3 3.8× 10−3 4.8× 10−3 6.8× 10−3 1.0× 10−2

ℓ2,0-GRLS 1.2× 10−3 1.5× 10−3 1.6× 10−3 2.0× 10−3 2.7× 10−3 3.6× 10−3 4.6× 10−3 5.7× 10−3

Table 6: Steady-state MSD for di�erent impulse response length values N ,
σ2 = 0.01.

σ2 = 0.01 N = 64 N = 128 N = 192 N = 256 N = 320 N = 384 N = 448 N = 512

RLS 1.7× 10−3 3.6× 10−3 5.4× 10−3 7.6× 10−3 9.9× 10−3 1.2× 10−2 1.4× 10−2 1.6× 10−2

ℓ1-RLS 1.0× 10−3 1.8× 10−3 2.7× 10−3 3.7× 10−3 4.9× 10−3 6.0× 10−3 7.0× 10−3 8.1× 10−3

ℓ2,1-GRLS 8.5× 10−4 1.5× 10−3 2.1× 10−3 2.7× 10−3 3.6× 10−3 4.2× 10−3 4.9× 10−3 5.5× 10−3

ℓ∞,1-GRLS 1.1× 10−3 2.0× 10−3 3.0× 10−3 4.1× 10−3 5.5× 10−3 6.7× 10−3 7.8× 10−3 9.1× 10−3

ℓ0-RLS 2.0× 10−4 2.9× 10−4 3.8× 10−4 5.5× 10−4 8.3× 10−4 1.1× 10−3 1.5× 10−3 1.9× 10−3

ℓ1,0-GRLS 1.5× 10−4 1.8× 10−4 2.0× 10−4 2.6× 10−4 3.7× 10−4 4.7× 10−4 6.8× 10−4 8.9× 10−4

ℓ2,0-GRLS 1.1× 10−4 1.5× 10−4 1.7× 10−4 2.1× 10−4 2.7× 10−4 3.5× 10−4 4.5× 10−4 5.6× 10−4
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