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Abstract. Almost all networks in real world evolve over time, and analysis of
these temporal changes may help in understanding or explanation of some prop-
erties or processes of a network. This paper presents GA-TVRC, a novel Rela-
tional Time Varying Classifier which uses Genetic Algorithms to extract temporal
information. GA-TVRC uses Evolutionary Strategies to optimize the influence of
each previous time period on classification of new nodes. A Relational Bayesian
Classifier (RBC) that is proposed by Neville et.al. [3] is utilized to compute the
fitness function. The performance of GA-TVRC is compared with both the RBC,
which ignores the time effect and the time varying relational classifier (TVRC)
that is proposed by Sharan and Neville [20]. TVRC improves the RBC by taking
the time effect into account using different predetermined weights. According to
the experiments on two real world datasets, GA-TVRC extracts time effect better
than the previous methods and improves the classification performance by up to
5% compared to TVRC and up to 10% compared to RBC.

Keywords: Relational Bayesian Classifier, Time-Varying Relational Classifier, Evolv-
ing Networks, Genetic Algorithms, Evolutionary Strategies

1 Introduction

Real world networks often have complex network structures with interacting, multi-type
components and these interactions and components may change over time. Examples
of such evolving networks include world wide web network, many types of biological
networks, movie-actor networks, scientific collaboration networks, power grids, and
telephone call networks [1, 28].

The change on the network involves critical information about the network and
should not be ignored. A change on the network may occur in three different ways:

– Addition of a new node or removal of a node
– Addition or removal of an edge
– Change of the node attributes

These types of changes in a network may provide additional information about the
network. For instance, two objects which interact during a long time period are likely



to have a strong relationship. Similarly, more recent relationships among objects are
probably more important than relationships that occurred in the distant past. The pat-
terns which can not be extracted from only a single snapshot of the network may be
revealed using the network snapshots for a long period of time. Hence, it is inevitable
to utilize the time information for a more accurate analysis of the network. Usually, only
additions or removals of edges between a fixed set of nodes are handled by the meth-
ods which deal with evolving networks. In addition to change of edges, our method
benefits from both the changes of nodes and the changes of attributes to improve the
classification accuracy.

Although there have been many efforts to understand the growth and dynamics of
networks [1], [2], there aren’t many studies that explore the evolution of the network
for different purposes such as classification. To be able to make a classification on an
evolving network, relations between nodes and the evolution of these relations should be
taken into account. The best way of representing these relations is utilizing the relational
data which involves information about the associated objects in addition to the object to
be classified. Classification on heterogeneous relational data requires additional effort
and differs from classification on homogeneous network data in which all objects have
the same number of attributes and all attributes have the same number of values. In
this paper, the classification on the relational data will be optimized by analyzing the
evolution of the network.

In this paper, a classifier called Genetic Algorithm enhanced Time Varying Rela-
tional Classifier (GA-TVRC) is proposed in order to improve the classification perfor-
mance in evolving complex networks. A detailed analysis is performed to understand
the influence of heterogenous, time varying data on classification. It is assumed that
interactions in each time period in the past have different influence on the classification
accuracy on the present network. Therefore, we focus on extracting the influence of
different time periods on classification in a network. For this task, a novel and fairly
general genetic algorithm based framework is proposed. Genetic Algorithms are em-
ployed to optimize the influence values of different time periods. Experimental results
on two real datasets show that the usage of influence values, computed by our method
for different time periods, improves the classification accuracy. The proposed frame-
work is general in that it may be used to improve the performance of any classification
method. In this study, a relational classifier, the Relational Bayesian Classifier (RBC)
[3], is chosen to be improved by adding time effect. The RBC is an extension of the
simple Bayesian classifier that can be applied on relational data. The relational classi-
fication is likely to perform better than the traditional classification because not only
the objects of the same type but also related objects of different types contribute to the
classification task.

We compare our method with RBC [3] which does not take the time effect into ac-
count and TVRC [20] which is a time varying relational classifier that extends RBC. We
also use a baseline method which utilizes random time influence values for comparison.
Experimental results show that GA-TVRC outperforms all these methods by using the
most accurate temporal information in the network and provides higher classification
performance than other methods.



The rest of the paper is organized as follows. Section 2 describes the background
information which provides the basis for the proposed method. In Section 3, related
work on evolving networks and relational classification is given. The details of our
algorithm is explained in Section 4. Section 5 gives the experiments and analysis of the
results, while Section 6 concludes with comments and future work.

2 Background

In this section, we first provide the techniques we use for relational classification. Then,
the basic information about the genetic algorithm is given to provide the required back-
ground.

2.1 Classification Method

We represent our relational dataset as an attributed multi-graph G = (V,E) where V is
the set of nodes of different types andE is the set of edges between them. The main pur-
pose of a relational classifier is the classification of a node of given type in V . Among
relational classifiers, RBC applies the simple Bayesian classifier to relational data with
some estimation techniques. Among these techniques, the independent value estimator
(INDEPVAL) which assumes each attribute value to be independently drawn from the
same distribution achieves the best results. Using this assumption, attributes with dif-
ferent numbers of values can be handled. RBC estimates the conditional probability of
a node i belonging to a class C given the attributes X and related nodes R:

P (Ci|X,R) ∝
∏

Xm∈XG(i)

P (Xm
i|C).

∏
j∈R

∏
Xk∈XG(j)

P (Xk
j |C).P (C) (1)

The related nodes are the objects which are connected to node i directly or through
some other nodes. The attributes are the attributes of both node i to be classified and
other related nodes. In order to calculate conditional probability of a class label (P (C|X,R)),
conditional probabilities of the attributes ((P (X|C)) are used. The conditional proba-
bilities given a class label is calculated for each attribute of the related nodes. There are
two types of nodes: G(i) denotes the node type to be classified and G(j) denotes the types
of other nodes. Xm and Xk are the attributes of these node types, respectively. In the
first part of multiplication, the conditional probabilities for attribute values of the node
of type G(i) are calculated. Then, the conditional probabilites for attribute values of the
node of type G(i) are computed in the second part of the multiplication. Finally, these
conditional probabilities are also multiplied with class label probability P(C). Although,
for normalization, the formula should be divided with the attribute value probabilities
P(X), since the INDEPVAL assumes that each attribute is independently drawn from
the same distribution, this denominator can be ignored.

TVRC extends RBC by including the time effect as follows [20] :

P (Ci|X,R) ∝
∏

Xm∈XG(i)

P (Xm
i|C).

∏
j∈R

∏
Xk∈XG(j)

wij
tP (Xk

j |C).P (C) (2)



The only difference between RBC and TVRC is the usage of weight value wt
ij . This

weight value is determined according to the relation between node i and related nodes
R. The conditional probabilities for attribute values of a related node are multiplied
with the weight value of the relation. In TVRC, in order to give more emphasis to more
recent relations, the weight values decay in time according to a pre-defined function.

In our work, the weight values are determined using the Genetic Algorithms. Please
see Section 4 for details of our method, Genetic Algorithm enhanced Time Varying
Relational Classifier (GA-TVRC).

2.2 Genetic Algorithms

Genetic algorithms were first proposed by Holland [4] as an optimization method. They
are especially suitable when the solution space of a problem is very large and an ex-
haustive search for the solution is impractical. In a genetic algorithm, potential solutions
should be shown in a suitable representation. Each possible solution is represented in
a data structure, which is called an individual and the algorithm tries to find the best
fitting solution. In order to improve the quality of a solution, the algorithm uses genetic
operations on individuals for some number of iterations.Genetic Algorithms provide
better results than traditional optimization algorithms do because they are less likely to
get stuck into a local maxima.

The main operations of the genetic algorithm are:

– Reproduction: Passing a candidate solution to the next generation.
– Mutation: Changing genes of an individual.
– Cross-over: Swapping the genes of any two individuals.

After applying these operations to an individual which is a candidate solution, the fitness
function is used to evaluate how good a solution is. The solutions are chosen statistically
according to their fitness values. This behavior is similar to the real world so that it is
likely but not guaranteed for a strong individual to survive.

Genetic algorithms can be used not only for binary genes but also for real numbers.
These kinds of numerical optimization problems are solved using Evolutionary Strate-
gies [5]. The Evolutionary Strategies are similar to Genetic Algorithms and also based
on adaptation and evolution. Here, they are used to optimize the influence of interaction
time on classification.

3 Related Work

Although the usage of network information for classification has been getting more
common, the change in network structure has mostly been ignored during classifica-
tion process. This maybe partly due to the reason that weighting and combining the
network data on different time periods, in the best way for the specific problem is dif-
ficult. The change of the network has been analyzed for different purposes and using
different methods [6]. For example, in link prediction, there are methods [7–9] that use
the change information to better predict the new links. In addition to link prediction,
clustering results have also been improved using the change of the network [10–13].



Another work attempts to model the evolution of social networks mathematically and
emphasizes the order of interactions instead of summarizing the static networks [14].
The effects of particular network properties on network evolution was examined in [15].

Using the time information was shown to improve relational classification by some
previous methods. Time Varying Classifier (TVRC) [19, 20] was shown to improve the
RBC [3, 16, 17] classifier. RBC primarily makes use of the related nodes as well as
the node to be classified. TVRC merges nodes and edges from different time periods
and generates a summary graph. Then RBC is applied with the weight values. TVRC
utilizes kernel functions for merging the weight values from different snapshots, each
of which represents the network in a given time period. The most accurate results are
obtained using decaying kernel functions, i.e. the information from the snapshots taken
in the recent past have more influence on classification. While this strategy was shown
to improve accuracies obtained, TVRC can not handle more complicated and uneven
cases of interaction. For instance, co-authorship of two scientists in t − 2∆t may be
more important than the co-authorship of these two in t−∆t. Besides, it is impossible
to assign optimum importance values for snapshots using this method even if they are
really all decaying, because the actual decay function may be different for different
kinds of networks. Hence, determining the optimum values representing the effect of the
past network data could produce more accurate classification results than time-decaying
kernels. In this work, evolutionary strategies are used to determine the optimum weights
for each network snapshot from different past time periods.

4 Genetic Algorithm Enhanced Time Varying Relational Classifier
(GA-TVRC)

Before the GA-TVRC algorithm starts, the network data need to be prepared to be used
as input to a time varying classifier. The network data are represented as distinct sub-
graphs. Each sub-graph includes the node to be classified and other related nodes which
have interacted with the node in previous time periods. After gathering the input in the
required form, the method is initialized.

The overall framework of the proposed time varying relational classifier method is
shown in Figure 1. The framework consists of three phases: training phase, validation
phase and test phase. The classifier is learned in training phase of the framework. In
validation phase, the influence of temporal data on classification is determined using
Evolutionary Strategies. This phase is the main focus of our work. The contribution of
this validation phase on classification accuracy is evaluated in the test phase.

Fig. 1: The phases of the GA-TVRC



4.1 Training Phase

The inputs of this phase are training data as distinct sub-graphs. Each sub-graph in-
cludes the node to be classified and other related nodes. In this phase, the probabilities
which will be used to compute the result in Equation 1 are calculated from training
data. The conditional probabilites of each attribute given a class label (P (X|C)) and
the probabilities of each class label ((P (C)) are estimated using the training data. The
ouputs of the phase are these probabilities which will be used in validation phase.

4.2 Validation Phase Using Evolutionary Strategies

In validation phase, the probabilities which are calculated in training phase are taken as
inputs and applied on validation data. Learned probabilities are used to classify nodes
in new sub-graphs using Equation 3. Time influence on classification is adjusted based
on the classification performance. The outputs of the validation phase are the optimal
time influence values which will be used in the test phase.

In this phase, Evolutionary Strategies are used for validating the proposed method
by adjusting the influence of each interaction time on classification. The classification
method is applied many times using Equation 3 with different time influence values in
this phase and the best combination is sought.

We add the time influence into RBC equation, but unlike TVRC, the time influence
is optimized by evolutionary strategies instead of using a kernel function. The nodes to
be classified are evaluated according to:

P (Ci|X,R) ∝
∏

Xm∈XG(i)

P (Xm
i|C).

∏
j∈R

∏
Xk∈XG(j)

cij
tP (Xk

j |C).P (C). (3)

Here, ctij indicates the influence value of the time period in which the interaction be-
tween the node i and another related node j occurred. Our algorithm explores the opti-
mal influence values of each time period using the Evolutionary Strategies. The steps
to obtain influence values are as follows:

– An initial random population is generated. An individual represents the influence
values for different time periods. Initially, each individual has random values.

– Following steps are applied until the algorithm terminates:
• The classifier is realized for actual valuess of each individual and the area under

the ROC curve (AUC) is obtained as the fitness value.
• The genetic algorithm operations are applied to the individuals and new indi-

viduals are created.
• New population is constructed by selecting fittest individuals among all indi-

viduals
– The individual with the highest fitness value is presented as the solution.

Representation Each individual is a solution candidate and it is an array of influence
values of each time period. Each gene location on an individual represents the influence
value of a time period. Here, we prefer to use individuals with 5 genes. The genes can
take on real values showing the effect of each interaction time on classification.



Mutation Mutation is performed by adding a random value to a gene of an individual.
The values to be added are drawn from the normal distribution N(ξ, σ) where the
mean ξ is set to 0 and the variation σ is called mutation step size. The mutation step
size (variation) σ is also updated after each iteration according to the mutation success
rate ps [18]:

σ =

σ/c if ps > 1/5
σ.c if ps < 1/5
σ if ps = 1/5

ps is computed as the ratio of successful mutations and c is a coefficient that is generally
set between 0.85 and 1 [18]. In our experiments the c value was set to be 0.9. The
vector values are changed by adding random noise drawn from the normal distribution:
x′i = xi + N(0, σ).

The mutation step size is evolved so that the search space’s traversal can be ad-
justed according to the mutation performance. The step size gets bigger by successful
mutations and therefore the diversity in Genetic Algorithm increases.

Cross-over Two children are created by cross-over as in the traditional cross-over
mechanism. The cross-over is applied to one gene in a random position from each par-
ent and these genes are switched in order to form new children. All individuals are
exposed to the mutation operator and both the individual before the mutation and the
individual after the mutation are preserved in the population. Then, the cross-over op-
eration is applied to individuals which are selected uniformly and new individuals are
created. After mutation and cross-over operations, the fittest individuals are selected as
the survivors and they constitute the new population.

Fitness The fitness to be used is the AUC value which results after each classification.
AUC denotes the area under the ROC (Receiver Operating Characteristics) curve. The
ROC curve is the plot of the true positive rate versus false positive rate for a binary clas-
sifier. It is formally proven that AUC is statistically consistent and more discriminating
than accuracy while evaluating learning algorithms [29].

A fitness value is computed for each individual representing a solution for time
influences. This fitness value is used to optimize the solution. The usage of AUC as
a fitness function provides the selection of best coefficients giving the unbiased and
optimum solution. Besides, there is no need for a normalization of AUC value because
the value of AUC is between 0 and 1 by its nature just like the fitness value. There are
many examples of different aspects using the AUC as a fitness function [21], [22], [23].

4.3 Test Phase

The inputs of test phase are the optimal time influence values from validation phase.
These optimal values and the probabilites which are learned in training phase are ap-
plied to new nodes in test set using Equation 3. The output of test set is the AUC value
after classification of test set.

After computing the optimal influence values in validation phase, the values are
used to classify further nodes and it is checked whether using the computed values



improves the classification performance or not. The test phase requires the computation
of conditional probabilities of belonging to each class label for a node and comparison
of them to determine true class label of the node. Here, the time of each past interaction
for this node and their influences on classification are also taken into account to compute
these probabilities for classification.

5 Experimental Results

In our experiments, the main goal was evaluation of the classification performance of
the proposed method GA-TVRC. The performance of four different methods were com-
pared. The first method to be tested was Relational Bayesian Classifier (RBC) and the
second one was Time Varying Relational Classifier (TVRC) that utilizes the time in-
formation in relational classification. Then, our method GA-TVRC that uncovers the
optimal influence values, was tested. In addition to these methods, a new method Ran-
dom Time Varying Relational Classifier (R-TVRC) in which the effects of each time
period are set randomly was also tested. The aim of the tests with R-TVRC was assess-
ing the contribution of other methods compare to random time influence values.

Another goal of the experiments was extraction of the pattern behind the effect
of different time periods on classification, if there is one. This pattern can be used to
understand the real time effect on classification.

5.1 Datasets

The experiments were performed on High-Energy Physics literature (HEP-Th) dataset
and P2P file sharing (Can-o-sleep) dataset. Both datasets have been used in different
studies and they also contain time information.

HEP-Th Dataset The HEP-Th dataset includes information on papers in theoretical
high-energy physics. This dataset was provided for the 2003 KDD Cup competition
[24].

The HEP-Th Database has 42319 nodes which are composed of 29555 papers, 9200
authors, 448 journals and 3116 e-mail domains. The edges which connect these nodes
are 352,807 citations, 87794 co-authorships, 58,515 authorship, 20,816 publications
and 12,487 e-mail affiliations. There are a total of 532,429 edges.

Fig. 2: The sub-graph structure of HEP-Th dataset



In Figure 2, the visual query which is prepared with QGraph [27] is shown. This
query is used for acquiring the sub-graphs which satisfy the required conditions. In a
sub-graph, there is not only the Paper node to be classified but also its related nodes
of types Journal, Citation, PastPublishedPaper and PastAuthoredPaper. The PastPub-
lishedPaper indicates the papers which have been published in the related journal before
while the PastAuthoredPaper indicates the past papers of the related author. The usage
of these types of nodes and the past interactions let us use the previous time infor-
mation which they have. A sample sub-graph which results after this query is shown
in Figure 3. This sample sub-graph is an example sub-graph which includes nodes of
given types and their interactions between 1994 and 1998. Here, the classification task
is to predict whether a paper is of the area Quantum Algebra.

Fig. 3: A sample sub-graph from HEP-Th dataset

The Proximity HEP-Th database is based on data from the arXiv archive and the
Stanford Linear Accelerator Center SPIRES-HEP database provided for the 2003 KDD
Cup competition with additional preparation performed by the Knowledge Discovery
Laboratory, University of Massachusetts Amherst.

Can-o-sleep Dataset The P2P file sharing dataset (Can-o-sleep) includes information
on files which were transferred in a campus network through P2P file sharing server.
The dataset contains mp3 files shared between users for 81 days in 2003. There are
563409 nodes which are composed of 291925 files, 6528 users, 221152 transfers, and
43804 queries. The edges which connect these nodes are ownership, transfer, making
queries etc. and overall there are more than 6 million edges.

In Figure 4, the visual query for Can-o-sleep dataset is shown. In addition to File
node to be classified there are also its related nodes of types Query, Transfer, User, Past-
Transfer and UsersPastTransferFile. The UsersPastTransferFile indicates other files
which have been transferred in the past by related users. Here, the classification task
is to predict whether a file will be transferred mored than 10 times a week.

The Proximity Can-o-sleep database is based on data collected by the Privacy,
Internetworking, Security, and Mobile Systems Laboratory at the University of Mas-



Fig. 4: The sub-graph structure of Can-o-sleep dataset

sachusetts Amherst with additional preparation by the Knowledge Discovery Labora-
tory, University of Massachusetts Amherst.

5.2 Methodology

The training and test sets are determined based on the sliding windows technique. That
is, the time period which includes the train and test set for an experiment, is shifted in
time to generate new train and test sets. The timeline including HEP-Th datasets which
are used in our experiments is shown in Figure 5. The required information, such as
conditional probabilities, are acquired on training set and the classifiers are tested on
the test set. The validation set is only used by GA-TVRC in order to explore the time
influence values. For instance, after learning conditional probabilities between 1994 and
1997, the papers published in 1998 and their past interactions are used for extracting the
influence of each year between 1994 and 1998. After this validaton phase, the computed
influence values are tested on the papers published in 1999. The sizes of each training,
validation and test sets which were used in our experiments are given in Table 1.

Fig. 5: The HEP-Th training, validation and test sets used in the experiments

Table 1: The sizes of HEP-Th training, validation and test sets in terms of number of
sub-graphs

Period Training Set Size Validation Set Size Test Set Size
1994− 1999 3495 840 886

1995− 2000 4220 864 1031

1996− 2001 4638 999 1133

Timeline that denotes the training, validation and test sets for Can-o-sleep datasets
is similar with HEP-Th timeline and it is shown in Figure 6. The sizes of each training,
validation and test sets are given in Table 2.



Fig. 6: The Can-o-sleep training, validation and test sets used in the experiments
Table 2: The sizes of Can-o-sleep training, validation and test sets in terms of number
of sub-graphs

Period Training Set Size Validation Set Size Test Set Size
week1− week6 1587 952 1085

week2− week7 1326 934 1102

week3− week8 1435 1013 1816

The performances of RBC, TVRC, R-TVRC and GA-TVRC were compared in our
experiments. Each method was applied on the same train and test sets. RBC was used
with the estimator INDEPVAL which assumes that each value is independently drawn
from the same distribution. It was experimentally shown that INDEPVAL provides the
best results compared to other estimators in [3]. Similarly, TVRC was also used with the
configuration that had been shown to give the best results. It was previously shown that,
among the kernel functions which determine the influence of time period, decaying
kernels provide best results [19]. The Exponential Kernel which decay the influence
values exponentially is the best kernel function among the decaying kernels. Hence,
Exponential Kernel was used with TVRC in our experiments.

In validation phase of GA-TVRC, Evolutionary Strategies have been run for 50
generations, each of which includes 20 individuals. The validation and test phases of
GA-TVRC have been repeated 10 times and the performance of GA-TVRC has been
determined by averaging the results of these runs. Similar with GA-TVRC, the per-
formance of R-TVRC has been determined by averaging the consecutive 10 runs. The
performance of each method have been quantified by evaluating the resulting AUC val-
ues.

5.3 Results and Analysis

The first set of experiments demonstrates the AUC values for RBC, TVRC, R-TVRC
and GA-TVRC. The results of all methods are shown in Table 3 and Table 4. As it
is seen from these tables, GA-TVRC outperforms other methods for all datasets and
provides an improvement of 10% compared to RBC and 5% compared to TVRC. TVRC
slightly achieves better than RBC by utilizing time effect. RBC algorithm which has
equal unit influence values provides similar results with R-TVRC which has random
values. Hence, it can be claimed that using decaying time influence values in TVRC
increases the AUC values compared to RBC and R-TVRC but optimizing time influence
in GA-TVRC gives the best results.

Extracting the trend of time influence on classification is one of the purposes of our
work. The optimal influence values of each year which were computed by 10 distinct



Table 3: The AUC values for each method on HEP-Th datasets
PPPPPPPTest Set

Method
RBC TVRC R-TVRC GA-TVRC

1999 0.804 0.839 0.801 0.900

2000 0.722 0.749 0.733 0.786

2001 0.815 0.828 0.794 0.840

Table 4: The AUC values for each method on Can-o-sleep datasets
PPPPPPPTest Set

Method
RBC TVRC R-TVRC GA-TVRC

week1 0.801 0.829 0.796 0.894

week2 0.769 0.797 0.753 0.841

week3 0.792 0.821 0.802 0.881

runs of the algorithm was given in Figure 7. We can say that the effect of an interaction
time on classification increases with time and more recent interactions have more influ-
ence but there are also some exceptions. The effect of year 1997 in Figure 7(a),(b),(c) is
relatively low in all three time periods and it is hard to discover this type of exceptions
without using genetic algorithms.

(a) HEP-Th 1994-1998 (b) HEP-Th 1995-1999 (c) HEP-Th 1996-2000

(d) P2P week1-week5 (e) P2P week2-week6 (f) P2P week3-week7

Fig. 7: The influences of each time period on classification

Another test set was performed to evaluate the progress of Genetic Algorithms. Fig-
ure 8 shows the best fitness values in each generation to check whether the fitness value
converges to some fitness value or not. The figure indicates that the fitness value is
likely to converge to it’s maximum value before termination of the algorithm. In addi-
tion, change in mutation step size which was evolved in GA-TVRC algorithm is also
examined. It is shown in Figure 9 that mutation step size increases in earlier genera-
tions after successful mutations. As the algorithm converges to solution, mutations start
to get fail and the mutation step size decreases and converges to 0.



(a) HEP-Th 1994-1998 (b) HEP-Th 1995-1999 (c) HEP-Th 1996-2000

(d) P2P Week1-Week5 (e) P2P Week2-Week6 (f) P2P Week3-Week7

Fig. 8: The evolution of the best fitness value by the generations

(a) HEP-Th 1994-1998 (b) HEP-Th 1995-1999 (c) HEP-Th 1996-2000

(d) P2P Week1-Week5 (e) P2P Week2-Week6 (f) P2P Week3-Week7

Fig. 9: The evolution of the mutation step size by the generations

6 Conclusions and Future Work

In this paper, we have demonstrated a novel framework for finding patterns in the influ-
ences of interaction times within a complex network in order to enhance the ability of
a classifier for the network. The proposed framework utilizes Genetic Algorithms for
efficiently extracting the effects of time periods in which the interactions in a network
occured. The optimal time effects which have been obtained by Evolutionary Strate-
gies have been, in turn, used to improve the classification performance. As far as we
know, Genetic Algorithms have never been used to explore the time influence on classi-



fication. We have shown that Genetic Algrithms may be used to improve classification
performance. It has seen that the classification performance may be improved by this
way. Besides, the analysis of evolution of time effect on the classification by the time is
another contribution and it may inspire the future works which will use the time effect
on classification.

Our method was evaluated on two real world networks. It was shown that, by using
time influence values, which have been derived by Evolutionary Strategies, the classi-
fication performance was improved in terms of AUC. Experiments showed that GA-
TVRC improves the classification performance of RBC by up to 10% with contribution
of utilizing time influence. In addition to this improvement, GA-TVRBC outperforms
TVRC which also utilizes temporal data according to a decaying exponential kernel
strategy which was reported to perform best. The assumption of generally decaying
time influence was mostly verified by results of our experiments. However, there are
also some exceptions to this observation and there is no definite patterns on these coef-
ficients. The lack of a pattern prevents using a mathematical expression and encourages
use of Genetic Algorithms.

We are in the process of extending our proposed framework in several diretions.
Each link type in a network may change in a different way and their effect should be
computed distinctly for each link type to improve the classification performance. For
example, the effect of a recent co-authorships may be more than the effect of a recent
publication relation. We are also planning to experiment on different kinds of networks
to better understand the time influence on classification.
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