

1

 Abstract—As the amount, availability and use of online music increase, music recommendation

becomes an important field of research. Collaborative, content-based and case-based

recommendation systems and their hybrids have been used for music recommendation. There are

already a number of online music recommendation systems. Although specific user information, such

as, demographic data, education and origin have been shown to affect music preferences, they are

usually not collected by the online music recommendation systems, because users would not like to

disclose their personal data. Therefore, user models mostly contain information about which music

pieces a user liked and which ones s/he did not and when.

We introduce two music recommendation algorithms that take into account music content,

singer/genre and popularity information. In the entropy-based recommendation algorithm, we

decide on the relevant set of content features (perspective) according to which the songs selected by

the user can be clustered as compactly as possible. As a compactness measure, we use entropy of the

distribution of songs a user listened to in the clustering. The entropy-based recommendation

approach enables both a dynamic user model and ability to consider a different subset of features

appropriate for the specific user.

In order to improve the performance of this system further, we introduce the content, singer/genre

and popularity learning algorithm. In this algorithm, we first evaluate the extent to which content,

singer/genre or popularity components could produce successful recommendations on the past songs

listened to by the user. The number of songs in the final recommendation list contributed according

to each component is chosen according to the recommendation success of each component.

We perform experiments on user session data from a mobile operator. There are 2000 to 500

sessions and of length 5 to 15 songs. Our experiments indicate that the entropy-based

recommendation algorithm performs better than simple content-based recommendation. Content,

Music Recommendation by Modeling User’s Preferred Perspectives of

Content, Singer/Genre and Popularity

Zehra Cataltepe and Berna Altinel

Istanbul Technical University

Computer Engineering Department

Ayazaga Campus, Maslak, Sariyer, Istanbul, 34469, Turkey

Final Version, July 12, 2008

Book Chapter for the Book

Collaborative and Social Information Retrieval and Access: Techniques for Improved User

Modeling

2

singer/genre and popularity learning algorithm is the best algorithm we investigated. Both

algorithms perform better as the session length increases.

Keywords—music recommendation, clustering, entropy, user model, audio features, content-based

recommendation, collaborative recommendation, popularity.

I. BACKGROUND

 Widespread use of mp3 players and cell-phones and availability of music on these devices according to

user demands, increased the need for more accurate Music Information Retrieval (MIR) Systems. Music

recommendation is one of the subtasks of MIR Systems and it involves finding music that suits a personal

taste (Typke et.al., 2005). The content search in MIR systems could also be used to identify the music

played, for example query-by-humming (Ghias et.al., 1995), to identify suspicious sounds recorded by

surveillance equipment, to make content-based video retrieval more accurate by means of incorporating

music content, to help theaters and film makers find appropriate sound effects (Typke et.al. 2005), to

produce audio notification to individuals or groups (Jung & Heckmann 2006).

Music recommendation tasks could be in the form of recommending a single album/song (Logan 2004)

or a series of them as in playlist generation (Aucouturier & Pachet, 2002; Alghoniemy & Tewfik, 2000). In

addition to containing interesting songs for the user or the user group, a playlist have to obey certain

conditions, such as containing all different songs, having a certain duration, having continuity and

progression from one song to the next (Aucouturier & Pachet, 2002). Therefore, playlist generation is a

harder task than single music item recommendation.

The songs to recommend could contain the audio or MIDI content, as well as, genre, artist, lyrics and

other information. The audience of a music recommendation system could be a single person or a group of

people (Baccigalupo & Plaza, 2007; McCarthy et.al. 2006). The audience or the songs could be dynamic or

mostly static. Depending on these task and user requirements, different algorithms have to be employed for

music recommendation. Yahoo Launch!, Last.FM, Pandora (music genome project), CDNow,

Audioscrobbler, iRate, MusicStrands, inDiscover (Celma et.al., 2005) are some of the music

recommendation projects.

In this chapter, we first review collaborative, content-based and case-based recommendation systems and

their hybrids for music recommendation. We also discuss the user models that have been considered for

music recommendation. We then introduce two music recommendation algorithms. In our algorithms, we

find the perspective of music such as different subsets of audio features, singer/genre or popularity, which

affect the song choice of users most. Then we recommend songs to users based on the perspective selected

for that specific user.

The rest of the chapter is organized as follows: Section II includes literature review on collaborative,

content-based, case-based recommendation systems, hybrid music recommendation systems and user

models for music recommendation. In Section III, we go through the motivation for our entropy-based and

learning recommendation approaches. Section IV contains the data set we used, the evaluation criteria to

compare recommendation algorithms, details on content, popularity and singer/genre information we use

for recommendation, our entropy and learning based recommendation algorithms and experimental results

and discussions. Section V concludes the chapter.

3

II. LITERATURE REVIEW

According to Burke (2002), a recommendation system has three components: the background data, user

input data and a recommendation algorithm to combine the background and input data to come up with a

recommendation. Based on these three components, Burke (2002) comes up with five different types of

recommendation systems: collaborative, content-based, demographic, utility based and knowledge based.

Among these, collaborative, content-based and case-based recommendation systems are the most used

ones.

 In this section, we first give an overview of collaborative, content-based and case-based

recommendation systems. Then we give examples of hybrid recommendation systems, mostly music

recommendation systems, which combine two or more recommendation schemes. We also discuss user

models in music recommendation systems.

A. Collaborative, Content-Based and Case-Based Recommendation

Collaborative recommendation systems take as input the users’ ratings and generate recommendations

based on items selected by users who previously selected similar items. This recommendation scheme does

not use the content of the background data and hence has the advantage of being applicable for various data

types from movies, to books to food. When there are a lot of users, it takes a lot of time to compute the

similarity between them. Item-based collaborative filtering algorithm analyzed in (Sarwar et.al. 2001)

overcomes this problem by finding items that are similar to the items that the user liked previously. They

show that item-based collaborative filtering performs better than user-based collaborative filtering. Ringo

(Shardanand & Maes, 1995) is one of the well-known collaborative music recommendation systems. Based

on the ratings given for various artists by the user, Ringo finds other users who have similar taste and

recommends groups or music pieces liked by those similar users. GroupLens is another collaborative

recommendation system which was used for filtering of usenet news articles (Resnick et.al., 1994).

Collaborative recommendation systems use a user-item matrix, which contains the ratings given by each

user to different items. Users who have similar ratings (similar rows of this matrix) are put into the same

user group. Pure collaborative recommendation systems suffer from the cold start (or latency) problem,

which means a new item which has not been rated by any user will not be recommended to anybody, until

some users rate them. Another problem is if a user is unusual, then there will not be users similar enough to

him and he will not be able to get reliable recommendations.

Content-based recommendation systems, use similarities of extracted features of items, in order to come up

with recommendations. These systems assume that users tend to like to items similar to the ones they liked

in the past and compute similarity according to some features based on the content of items. NewsDude of

Billsus & Pazzani (1999) is one of the earlier examples of content-based recommendation systems. The

main disadvantages of content-based recommendation systems are the difficulty of expressing content

similarities, the time it takes to compute content similarities when there are many of them and finally the

diversity problem, the fact that the user may not ever be recommended items which are not like the items

he has seen in the past but may have actually liked.

There are also case-based recommendation systems. A case-based reasoning system stores solutions to old

problems. When a new problem arrives, it fetches a problem which is likely to have a similar solution.

Based on the user response, i.e. whether the solution is what the user required or not, the system learns the

new case also. In case-based recommendation systems, user answers some questions on what s/he likes

4

and s/he is asked some other questions and based on those answers the best item to recommend is found.

Wasabi Personal Shopper (Burke, 1999) is one of the early case-based recommendation systems, where

users are recommended wines based on answers they give to questions related to quality, price and other

properties of wines. Burke (2000) also mentions Entrée and Recommend.com for restaurant and movie

recommendation respectively. All of these recommendation systems are based on the FindMe knowledge-

based recommender systems where users are asked questions and they can “tweak” the solution they

receive according to the answers they provide. Burke (2000) identifies certain aspects of similarity that are

important for the recommendation task at hand, for example, cuisine, price and location for a restaurant.

Then he produces retrieval strategies which order the similarity metrics according to their importance, for

example: first price, second cuisine, and then location. It is mentioned in (Burke, 2000) that collaborative

and case-based recommendation could be combined in order to come up with a better recommendation

scheme. Another case-based recommendation system is introduced in (Göker & Thompson, 2000). In this

system, user models are used for case-based recommendations. The user models are used not only to

increase accuracy, but also to enable the user to reach to information s/he seeks, with as small number of

questions as possible.

B. Hybrid Music Recommendation Systems

There have been a lot of work on hybrid recommendation systems, where collaborative, content-based or

case-based recommendation schemes are used together for a better recommendation scheme which does not

have the weaknesses of the original ones (Burke, 2002). A hybrid recommender can be built out of existing

ones using a number of different methods. A weighted sum that comes from the votes or scores from the

existing algorithms can be used to produce recommendations. The system could switch between base

recommenders depending on the amount of data available. An example of a switching system is in

(Pazzani, 1999), where they decide on which recommender to use based on each recommender’s success on

the user’s past items. Their approach is similar to our work here based on the incorporation of past session

history to decide on the recommender. Instead of deciding on a single recommender, recommendations

from several different recommenders could also be presented to the user at the same time (Smyth & Cotter,

2000). Using collaborative information as another type of feature in addition to the content feature and then

performing content-based recommendation is another option (Basu et. al., 1998). Cascading, feature

augmentation and meta-level combination of recommenders are the other types of hybrid recommedation

techniques mentioned in (Burke, 2002).

Among the hybrid recommender systems, (Popescul et.al., 2001) built a hybrid method of content-based

and collaborative filtering approaches and extended Hofmann & Puzicha’s (1994) aspect model to

incorporate three-way co-occurrence data among users, items, and item content. They showed that

secondary content information can often be used to overcome sparsity. Experiments on data from the

ResearchIndex library of Computer Science publications showed that appropriate mixture models

incorporating secondary data produce significantly better quality recommenders than k-nearest neighbor (k-

NN). Probabilistic models were also used for recommendation. (Smyth & Cotter, 2000) used content-based

and collaborative recommendation techniques to come up with a list of programs a person may want to

watch on TV. They found out that collaborative approach always resulted in better recommendations than

the content-based approach for this problem. Two different types of information: domain and program

preferences are kept in the user profile for collaborative recommendation. (Jin et.al., 2005) used both

content and user rating information to produce probability of recommendation for each web page.

Yoshii et.al. (2006) introduced a new hybrid music recommendation system incorporating both content-

based and collaborative filtering approaches by means of a Bayesian Network. In this method, the

distribution of mel-frequency cepstral coefficients (MFCCs) was modeled as music content.

5

Representations of user preferences differs between collaborative and content-based methods. The former

represents a preference of user as a vector that contains rating scores of all pieces. The latter represents the

preference as a set of feature vectors of favorite pieces. In order to build a hybrid recommender system,

they used a Bayesian network called a three-way aspect model proposed by Popescul et.al. (2001). Their

test results showed that their method outperforms the two conventional methods in terms of

recommendation accuracy and artist variety and can reasonably recommend pieces even if they have no

ratings.

Chedrawy & Abidi (2006) introduce PRECiSE, a collaborative case-based recommendation system and use

it for music playlist recommendation. First an item based collaborative filtering (Linden, 2003 ; Sarwar

et.al., 2001) is performed, instead of a single value for item-item similarity, a vector of similarities is used.

Each component of this vector represents the similarity of items from a perspective, for example lyrics,

tune, band etc. The user chooses the relevant perspectives himself. The context similarity of two items is

then computed by taking a weighted and normalized sum of perspective similarities. According to this

context similarity, for each item rated by the user the closest items are found and a recommendation list is

produced based on those closest items. Although (Chedrawy & Abidi, 2006) report that using more (3

instead of 1) perspectives result in better recommendation performance, we believe that if more and more

dimensions are added, they could be useless or even harmful because they introduce noise into the context

similarity values. In the second stage of the recommendation process, they use case-based reasoning

mediation of past cases. They select cases which are most similar to the current user and based on their

appropriateness degree with the user, produce recommendations. A weighted sum of the past similar cases

are stored into the case database to represent the current user. According to F1 measure, (Chedrawy &

Abidi, 2006) show that they get significantly better results with the addition of the case-based reasoning

stage.

Li et.al. (2004, 2005 and 2007) showed that using content in addition to user ratings help with collaborative

recommendation’s three basic problems related to lack of enough data: user bias, non-association, and cold

start problems in capturing accurate similarities among items. They performed their experiments on music

and video data sets. They use ring tones for cell phones users as their recommendation items. Li et.al. used

ratings by users and item attributes together and produced item clusters. They first clustered items together

according to their features. Assuming that the ratings of a user in an item community are distributed

according to a Gaussian distribution, they produce pseudo-ratings for items that are not yet rated by a user.

Both real and pseudo ratings are used to create item groups. An item which has not yet been rated by a user

is rated assuming a Gaussian parametric model for ratings for each user. This produces a solution to the

cold start problem. In their work, Li et.al., also used the audio features produced by Marsyas (Tzanetakis &

Cook, 2002) and experimented with combinations of different features. In our system, we are able to use

the Marsyas feature group which best groups the music taste of a user. Another similarity between our and

Li et.al.’s work is the cell-phone user data. They work on ring-tones, whereas we work on the songs

downloaded by users so that people who call them can listen to instead of the ring-back tone.

Chen & Chen (2005) used both content and user ratings for MIDI music data and achieved better

recommendation when using them both. Wang et.al. (2006) perform experiments on collaborative filtering

both in text and music recommendation areas.

6

C. User Models in Music Recommendation Systems

User models contain information about a user. By means of the user model, collaborative recommenders or

their hybrids are able to find similar users. In a very simplistic sense, once similar users are found,

recommendations can be made based on the items they chose and the items the user chose to in the past.

The user information could be gathered explicitly (for example a survey to get sex, age, education, origin

etc., see, for example, (Kuo et.al., 2005)) or implicitly, through observation of the user’s behavior in the

system and then use of machine learning or knowledge-based techniques. Explicit information indirectly

and implicit information can be directly used by a recommendation system. The user model can be useful

to increase accuracy of recommendation (Sarwar et.al., 2001) as well as making the recommendation

process shorter (Goker & Thomson, 2000).

The user’s preferences change over time, therefore the user model needs to be dynamic. In their work,

Billsus and Pazzani (1999) use two user models, a short term and a long term model, which are modeled

using a k-Nearest Neighbor and Naïve Bayes classifiers respectively. In (Rolland 2001) a user model which

changes over time as user’s preferences change is suggested. Rolland uses alignment similarity between

notes in MIDI files of songs to determine their similarity. (Kumar et.al., 2001) used probabilistic user

models in their analysis. In this model users select items from different clusterings with some probability

and they select each clustering also with some other probability. The probabilistic framework allows

analysis of recommendation algorithms in terms of their behavior for different conditions. The work of

(Lekakos & Giaglis, 2007) includes lifestyle segmentation of a user for digital interactive television

advertisements. Lifestyle includes external (culture, demographics, social status, etc.) and internal factors

(perception, motives, personality, etc.). They start with a recommendation algorithm based on the lifestyle

of the user and then enrich the algorithm to become a better performing hybrid. They consider both

segment level and user-level personalization of recommendations and suggest different levels of

personalization based on the amount of data available for the user.

There have been some work to come up with a common language (see UMIRL (User Modeling for

Information Retrieval Language) (Chai & Vercoe, 2000), USERML (User model Markup Language)

(Heckmann & Kruger, 2003)), in which different systems may describe the user in this standard format to

make the user model sharable and reusable.

According to (Chai & Vercoe, 2000), user models are necessary in music recommendation systems due to a

number of reasons. User models are needed to specify some perceptual features, for example, to get a

happy music, since it depends on all of them, we may need a tuple: <music, user, context, feature, value> to

describe it, because a music piece could sound happy to a user based on where s/he listens to it.

Demographic and personality factors (such as age, origin, occupation, socio-economic background,

personality factors, gender, musical education) have been shown to affect music preference (Uitdenbogerd

& van Schyndel, 2002; Yapriady & Uitdenbogerd, 2005), therefore, whenever they are available, they

should be included in the user model.

There are a number of internet radio stations which use music recommendation to come up with good songs

for users. Among those, Last.FM [www.last.fm] (Aucouturier & Pachet, 2002) creates a user profile based

on immediate user feedback and uses collaborative filtering for users. On Pandora Music

[www.pandora.com], users provide their approval or disapproval on the individual song choices which later

is taken into account. Slacker [www.slacker.com] also operates very similarly. Due to the fact that most

people would be unwilling to share their personal information, these radio stations do not ask users about

their education, origin, age, sex, etc.

7

III. MOTIVATION

We aim to use different sources of information, for example audio content, genre/similarity and

popularity, in order to come up with better user models and hence better recommendations, for each user

individually. Users tend to make choices based on different aspects of music. For example, while someone

may like songs based on whether they contain a fast beat, someone else may like them due to their slow

beat. In such a case, using only the beat information about a song, we can tell whether these two users

would like a song or not. First of all, for all possible feature groups (beat, mfcc etc.), we produce

clusterings of all available songs. For each user we choose the feature set that can be used to cluster the

songs the user has listened to as compact as possible. If songs are distributed all over the clusters, then it

means that the particular feature set is not suitable for that user. Otherwise, the similarity measure could be

used to recommend new songs to the user. As a measure of compactness, we use an entropy (Cover, 2006)

criterion. When we recommend a certain number of songs, to a user at a certain time, we recommend a

certain percentage of songs based on the content of the songs the user has listened to so far and the

remaining songs based on the popularity information about songs (Cataltepe, 2007a).

Different feature groups we consider correspond to perspectives of (Chedrawy & Abidi, 2006) which had

to be explicitly selected by the user. Finding out the appropriate feature group in this way also

automatically allows for dynamic user modeling as in (Rolland, 2001). We should also note that,

traditionally recommendation systems build clusters of songs or users in order to make faster

recommendations. However, the clustering we do here has the sole purpose of determining the right feature

set for the user.

Combinations of different audio content features have been previously used for music recommendation. Li

et.al. (2004) combined different audio features based on the proximity of songs and found out that their

combination may result in better recommendation performance. Our approach differs from them in that we

use all combinations of subsets of audio features in different number of dimensions. We also incorporate

song selections by other users in the system. Li et.al. (2004) performed their experiments on a different

real-world music corpus, which has 240 pieces of music and 433 users with 1,150 ratings. Our music

corpus has 730 audio files and more than 1,350,000 users. Vignoli & Pauws (2005) also combined different

audio features. We differ from them in calculation of timbre, genre and mood. They used all features

whereas we used different subsets of features. Performance of different subsets of audio features have been

examined in (Logan 2004). Logan found out that for the song set recommendation problem, using MFCC

features with k-means clustering, minimum distance is a better measure than median or average. For MIDI

songs, features extracted from MIDI features could be used, for example (Chen & Chen, 2005). The

framework we use in this chapter can be used for MIDI or audio features.

Entropy has been used within the collaborative filtering framework. Pavlov & Pennock (2002) developed a

maximum entropy approach for generating recommendations. In order to minimize the case that the

recommendations will cross cluster boundaries and then recommending only within cluster, they addressed

sparsity and dimensionality reduction by first clustering items based on user access patterns. They

performed experiments on data from ResearchIndex and they showed that their maximum entropy

formulation outperforms several competing algorithms in offline tests simulating the recommendation of

documents to ResearchIndex users.

Every user may also choose songs based on popularity or singer/genre of the songs, and again the

importance they give to these properties may also be different for each user. We introduce a framework that

lets us estimate the weight of content, popularity and singer/genre for each user based on his/her listening

history and make recommendations based on those weights.

8

IV. STRUCTURE

A. DATA SET

User session data is the most important component of a recommendation system. Although there have

been recent attempts to produce publicly accessible audio databases (McKay et.al., 2006), we are not aware

of a music recommendation database that contains considerable amount of users, sessions and songs.

In the system we consider, cell-phone users pay for and download songs that will stay active in their

accounts for upto six months. When someone calls them, instead of the regular ring-back tone, the caller

hears one of the songs downloaded by the user. The ring-tone melody of the mobile phones have been

colored and the phone melodies have become a huge market. Subscribers have paid and are still paying for

their customized, popular ring tones. There are many operators sharing revenues with the ring tone content

providers. Now the market that is created by the ring tones may be expanded to the ring back tones.

Traditionally, subscribers listen to the infrastructure based tones before connecting to the other party. The

traditional tones are played at the call states of alerting, busy, not reachable, and no answer. In the system

from which our data set comes, customers change the traditional ring back tones with the melodies they

select. Although the choice of songs downloaded may be affected by the identity of people who call the

user, the user is the person who picks the songs not the calling party. On the other hand, the song

preferences of a user may also change in time. Since the songs downloaded in the previous part of a session

are used for the same purpose as the songs downloaded at the later parts, in other words, the characteristics

of the recommendation task does not change, we believe that this is a legitimate music recommendation

task. We should also note the fact that the songs downloaded are not gifts for other people.

We are provided with the identity of the songs and the times they are selected for each user. There were

sessions containing different number of songs, however, we concentrated only on sessions of length 5, 10

and 15 songs. There were a total of 11398, 1215 and 518 user sessions of length 5, 10 and 15. Due to time

limitations, in our experiments, we used 2000, 1000 and 500 of these sessions respectively. There were a

total of 730 songs, whose audio features we obtained as described below.

In our recommendation system, no feedback about the recommendation is given to the users and we can

not evaluate the live system performance. We evaluate the system performance based on how well we can

predict what user selects at a particular point in time.

B. EVALUATION OF RECOMMENDATION ALGORITHMS

Many metrics have been proposed to evaluate recommendation algorithms. (Herlocker et.al., 2004)

provides a detailed review of evaluation metrics and their suitability for different tasks, number of items

and users in the recommendation system and the kind of input available from the user. In terms of the tasks,

the task we consider in this chapter is the task of “Find Good Items”. Although, a live evaluation would be

a lot more reliable, it was not possible to perform it for the recommendation system proposed, hence the

evaluation results are based on user requests that already happened. However, we make sure that the

evaluation results are for test items only, we separate the last item in a session for a user and evaluate the

performance of the system for that item. Since we have timestamps for each item request, we make sure

that we only use information available at the time of recommendation.

In order to evaluate our recommendations, we can not use metrics that rely on multi-valued ratings, since

they are not available. In our system, what we really have are, what (Herlocker et.al., 2004) calls “unary”

ratings, since we only have a record of items user selected, an item which has not been selected in the past

9

is not necessarily disliked by the user. The metrics we could have used are precision, recall, F1 metric,

ROC (Receiver Operating Characteristic) curve and AUC (Area Under ROC Curve or Swet’s A Measure).

Precision is the number of selected and relevant items divided by the number of selected items. Recall is

the probability that a relevant item is selected and it is computed by dividing the number of relevant and

selected items to the number of relevant items. As the number of recommended items increases, recall

increases and precision decreases. F1 measure attempts to combine both metrics into one. While F1

measure combines precision and recall for a single recommendation list length, ROC curve provides a

curve of precision and recall values for all possible recommendation list lengths. The AUC is the area

under an ROC curve and it makes comparison of algorithms’ performance easier. If a recommender is able

to find the items at the beginning of the recommendation list, it would have higher values of precision at

the beginning of the ROC curve and hence a higher AUC value.

In our study, we use percentage of times the correct song was in the list of recommendations returned as an

evaluation measure. The same metric has been used in (Logan, 2004) for a number of different

recommendation list lengths. We use a recommendation list of length 20 for all algorithms. As the

recommendation list gets bigger this evaluation measure would increase. (Logan, 2004) also used a more

relaxed metric where she assumed that a recommendation was correct if the composer name was correct.

Error rate (which is one minus percentage of times correct) has been used in, for example, Jester joke

recommendation system (Goldberg et al., 2001). Yoshii (2006) also used accuracy to evaluate their

recommendation system.

C. CONTENT INFORMATION

For each song in our data set, we have the audio files, from which we extract the audio features described

below. Singer and genre of each song is also known. Based on the songs listened within a certain number of

days, we also obtain a popularity measure for each song.

1) Audio Features

Several features including low-level parameters such as zero-crossing rate, signal bandwidth, spectral

centroid, root mean square level, band energy ratio, delta spectrum, psychoacoustic features, MFCC and

auditory filter bank temporal envelopes have been employed for audio classification (Uitdenbogerd & van

Schyndel, 2002). In our experiments, we obtained the following content-based audio features using

Tzanetakis’s Marsyas software [opihi.cs.uvic.ca/marsyas] with default parameter settings (Tzanetakis &

Cook, 2002).

Timbral Features (MFCC and STFT)

Timbral features are generally used for music-speech discrimination and speech recognition. They

differentiate mixture of sounds with the same or similar rhythmic content. In order to extract the timbral

features, audio signal is divided into small intervals that can be accepted as stationaryl. The following

timbral features are calculated for these small intervals: spectral centroid, spectral rolloff, spectral flux,

time domain zero crossing, low energy, mel-frequency cepstral coefficients (MFCC).

Means and variances of the spectral centroid, spectral rolloff, spectral flux, zero crossing (8 features) and

low energy (1 feature) results in the 9 dimensional feature vector and it is represented in experimental

results using the STFT label. Means and variances of the first five MFCC coefficients yield a 10

dimensional feature vector, which is labeled as MFCC in the experiments.

Rhythmic Content Features (BEAT)

Rhythmic content features characterize the movement of music signals over time and contain such

information as the regularity of the rhythm, the beat, the tempo, and the time signature (Tzanetakis & Cook,

2002; Li & Tzanetakis, 2003). The rhythm structure is detected based on the most pronounced periodicities

10

of the signal. Rhythmic content features are calculated by beat histogram calculation and yield a 6

dimensional feature vector which is represented using BEAT label.

Pitch Content Features (MPITCH)

The melody and harmony information about the music signal is obtained by pitch detection techniques.

Although musical genres may not be characterized fully by their pitch content, there are certain patterns

that could lead to useful feature vectors (Tzanetakis & Cook, 2002). Pitch content features are calculated by

pitch histogram calculation and yield a 5 dimensional feature vector which is labeled as MPITCH in the

experimental results.

The following is a list of audio features we use and their length:

• BEAT (6 features)

• STFT (9 features)

• MFCC (10 features)

• MPITCH (5 features)

• ALL (all 30 features above)

Using CLUTO (Karypis, 2002) software and graph clustering option, we obtain 8 different clusterings of

all the 730 songs in our database.

We use the Euclidean distance between song features as the distance between songs. If x and y are audio

feature vectors of dimension d for two songs x and y, the distance between x and y is:

()∑
=

−=−=
d

i

audio iyix
d

yxyxd
1

2
)()(

1
),((1)

 We also considered the cosine similarity between song features, however did not observe a significant

performance difference. We obtained 8 clusterings using the following (audio) feature combinations:

MFCC, MPITCH, STFT, BEAT, MFCC+MPITCH, STFT+BEAT, MPITCH+BEAT and ALL. We

considered all 15 possible feature set combinations, but discarded combinations for which the clustering

algorithm can not perform well (i.e. very non-homogenous clusters, many songs outside clusters, etc.).

2) Singer/Genre Information
Singer/genre distance value is calculated according to the 4 level hierarchy presented to the cell-phone

users: Turkish/Foreign song, genre, singer and song (Figure 1). Because users are presented the song

information in this way, what they select is affected by it. Using singer/genre distance, we wanted to take

the effect of this presentation into account. If two songs share the same singer (lowest category) then their

singer/genre distance is 0, if they do not share the same highest category, their singer/genre distance is 1.

We denote the singer/genre distance between two songs x and y as),(sin yxd ger .

11

Root

Turkish Music
Foreign Music

Turkish Pop

Arabesque

Classical
Music

Rock Music

Tarkan

Art and Folk
Music

National
Anthem

Series and
Film Music

Figure 1. Some of the singer/genre categories.

3) Popularity Information

For any day of recommendation, we group songs into popular and non-popular. We compute the

popularity ratio as the number of times a song is listened within the last t days divided by the number of

times all songs are listened within the last t days. We compute the mean popularity ratio for all songs and

group songs whose popularity ratio are below the average as unpopular and the rest as popular. (Ahn, 2006)

is another study that uses popularity for recommendation.

We use the popularity matrix in order to compute the popularity values (Table 1). The popularity matrix

contains the count of the times a specific song is requested by a user and the count of how many songs were

requested among all 730 songs. In order to compute the popularity ratio of a song on a specific day, we take

the ratio of these two counts (Table 2).

12

Table 1. A sample table showing the number of times each song is listened on a day (Popularity Matrix)

Day Bryam

Adams-I

need

Somebody

50

Cent-

Just

A

Little

Bit

Jennifer

Lopez-

Play

Paris

Avenue-

I Want

You

… All

Songs

Listened

01.01.2006 3 0 2 1 … 34

02.01.2006 5 1 4 2 … 78

03.01.2006 6 2 12 5 … 101

04.01.2006 11 4 10 7 … 124

05.01.2006 25 0 1 0 … 45

… … … … … … …

Table 2. A sample table showing the popularity values computed Table 1 above.

Day Bryam

Adams-I

need

Somebody

50 Cent-

Just A

Little Bit

Jennifer

Lopez-

Play

Paris

Avenue-I

Want You

… All Files

Listened

01.01.2006 0.088 0 0.058 0.029 … 34

02.01.2006 0.064 0.013 0.051 0.015 … 78

03.01.2006 0.059 0.02 0.119 0.05 … 101

04.01.2006 0.089 0.032 0.08 0.056 … 124

05.01.2006 0.556 0 0.022 0 … 45

D. RECOMMENDATION ALGORITHMS

In this section, we first introduce the notation that will be used for our recommendation algorithms. Then

we give the two recommendation algorithms: entropy-based and content, singer/genre, popularity learning

based recommendation.

1) Notation

Let []),(),...,2,(),1,()(iNisisisis = represent the i’th user session containing iN songs.),(jis represents

the j’th song of the i’th session. Each song is represented by means of the 30 dimensional audio feature

vector, 30

, Rx ji ∈ consisting of MFCC, MPITCH, STFT and BEAT features described above.

[]),(),...,2,(),1,()(iNitititit = is the vector of the times at which the songs in session s(i) were chosen.

The recommendation task that we consider is the following: Given the portion of a session excluding the

last song,),(),...,2,(),1,()(1−

−
= iNisisisis , recommend M songs from among the 730 songs at time),(iNit .

The value of M needs to be selected carefully, based on the number of items user can examine and the

13

error level that can be tolerated.

A recommendation consists of ∑
=

=
K

k

kMM
1

songs, where kM represents the number of songs

recommended according to similarity measure k . We consider 8=K different types of information.

8...1=k correspond to the 8 different subsets of audio features MFCC, MPITCH, STFT, BEAT,

MFCC+MPITCH, STFT+BEAT, MPITCH+BEAT and ALL.

Below we describe the recommendation algorithms used in this study. The experimental results for each

algorithm are given in the Experimental Results section.

2) ENTROPY-BASED RECOMMENDATION

When we need to recommend M songs using),(),...,2,(),1,()(1−

−
= iNisisisis at time),(iNit , for each

clustering 8...1=k , we compute the number of songs to recommend from this clustering as follows. For

the clustering c , we first find the cluster to which each song belongs. Let:

)1/(−= icc Nnp (2)

be the ratio songs in session −)(is which fall into a cluster c. In equation (2), nc is the number of songs in
−)(is assigned to the cluster c , where c≤C=20 and C is the number of clusters.. The (Shannon) entropy

(Cover, 2006) value for this clustering is computed as:

∑
=

−=
C

c

cck ppH
1

log (3)

The number kM of songs to recommend from clustering k, should decrease as the value of kH increases.

Because a high value of entropy means songs in the session −)(is are distributed all over the clustering k.

In this study, we use a discrete scheme to compute
kM .The clustering whose entropy is minimum is

selected as the clustering to which the user belongs, because it is the clustering that can group the songs

user has listened to in the best possible way. All M songs are recommended from that clustering. Figure 2

shows an example depiction of the entropy-based recommendation.

When popularity P, where 10 ≤≤ P , is also included in recommendation, first P*M most popular songs at

the time of recommendation are recommended. The remaining (1-P)*M are selected according to the

entropy-based scheme above.

14

Figure 2. A depiction of the entropy-based recommendation. Different perspectives/feature groups of

songs are shown with small rectangles. User1’s songs can be grouped as having common black second

property, User2’s songs have their first property gray. The second property can be used to select songs for

the first user and the first property can be used to select songs for the second user. Hence song4 can be

recommended to User1 and song5 can be recommended to User2.

3) CONTENT, POPULARITY AND SINGER/GENRE LEARNING BASED RECOMMENDATION

Entropy-based recommendation recommends a certain percentage P popular songs for all users in the

system. However, just like favoring different sets of audio features, users could show different preferences

for songs based on their popularity or singer/genre. In content, popularity and singer/genre learning based

recommendation, in addition to user’s preferred set of song features based on entropy, we also learn his/her

degree of preference for songs based on their popularity and singer/genre. This way, instead of system wide

values for P, we can have a different P value per user based on the user’s history of songs. We can also

incorporate the singer/genre preferences for the specific user.

In this method we consider all three components (content similarity, singer/genre similarity and the

popularity) and learn the percentage values for each component. We do the learning as follows: For each

ii Njsjis <∈
−
,),(, we try to find s(i,j) based on all remaining 2−iN songs in the session. We use content,

singer/genre and popularity components all by themselves for finding song s(i,j) when they give M

recommendations. We choose the number of songs to recommend from each of the content, singer/genre

and popularity components proportional to their number of successes in recommending item s(i,j) .

As seen in Figure 3, each user could be given recommendations from a different recommender based on the

success of content, singer/genre (not shown) or popularity recommenders on the past user session data.

15

Figure 3. A depiction of the popularity, singer/genre learning based algorithm. The songs requested by

User1 are always the most popular songs therefore the recommendation for that user is song5, which is the

most popular song when recommendation is requested. On the other hand, songs listened by user 2 are not

always the most popular, therefore, user model 2, not the popular songs, is used to get the recommendation

for user 2.

E. EXPERIMENTAL RESULTS

In Table 3, we give the results of simple recommendation, based on a single set of song features for all

users and entropy-based recommendation, which uses the minimum entropy set of features for each specific

user.

Results are shown for varying ratio P of recommendations from the popular songs. The number of sessions

considered are 2000, 1000 and 500 for sessions of length 15, 10 and 5 respectively. A recommendation is

considered successful if the Ni’th song is among the recommended songs. M=20 songs are recommended in

all cases, therefore if songs to be placed on the recommendation list were selected randomly without

replacement from among the 730 songs, the probability of success would be 20/730=2.74%.

Percentage of songs recommended from among the popular songs at the time of recommendation are

shown on the second column. As more popular songs are considered for recommendation, success

increases. The remaining songs are recommended using entropy-based method. Column 3 in the table

shows the recommendation success when the entropy of clusterings of songs in user history are used to

select the best clustering for the user among 8 different clusterings. Columns 4, 5 and 6 shows the

recommendation success when only a static set of features and hence clustering (ALL, MPITCH+MFCC,

BEAT+STFT) are used. The entropy-based recommendation results in 10 to 62 percent better

recommendation success. With increasing the session length the entropy-based method becomes even more

successfull, because feature set and hence the clustering valued by the user in selecting a song can be

predicted more reliably. When content-based recommendation is done based on only a static set of features,

using ALL features results in better recommendation success than using any subset of features.

16

Table 3. Recommendation success when 8 clusterings and entropy measure vs. a static single clustering is

used.

Session

Length

P =

%Popular

Recommend

%RecomSuccess

Entropy-based

%RecomSuccess

 All Features

%RecomSuccess

MFCC+MPTCH

%RecomSuccess

STFT+BEAT

5 20 21 19 11 11

5 40 30 22 16 13

5 60 40 28 14 17

5 80 44 33 22 19

10 20 22 18 13 13

10 40 32 25 16 18

10 60 41 27 13 13

10 80 46 29 20 17

15 20 22 17 8 11

15 40 33 21 16 13

15 60 44 27 15 15

15 80 50 32 17 17

Table 4 compares all the algorithms considered in this study. As seen in the table, content, singer/genre and

popularity learning performs best and entropy-based recommendation method follows. Both methods

perform better than content-based recommendation based on all the available song features.

Table 4. Comparison of Recommendation Accuracies of Simple (Using ALL features), Entropy-based,

Popularity and Singer/Genre Learning and User Group Learning Algorithms.

Session Length %RecomSuccess

Simple Recommendation

Using ALL features

(P=80%)

%RecomSuccess

Entropy-based

Recommendation

(P=80%)

%RecomSuccess

Content, Popularity,

Singer/Genre

Learning

5 33 44 70

10 29 46 71

15 32 50 73

As the session length increases, there is more information available about user’s preferences. While simple

recommendation has not benefited much from this information, both entropy-based and content,

singer/genre and popularity learning based recommendation algorithms were able to get better. When

session length is very small, the entropy values computed become less reliable. It could be a good idea to

incorporate the session length into the content, singer/genre and popularity learning algorithm.

17

V. CONCLUSIONS AND FUTURE WORK

In this chapter, we introduced a number of new ideas for music recommendation based on different types of

available information. First of all, we introduced a framework that lets us use different subsets (portions) of

audio features for each user so that we can do recommendation to a user, based on the most relevant subsets

of features for that user. We used the entropy measure to decide on which subset of features to use for a

particular user. We then introduced a recommendation algorithm where content, popularity and

singer/genre preference for each user are computed and the best performing recommender is selected for

that user.

Analyzing the performance of these recommendation systems on a running system and using them not only

for music recommendation, but also for web page recommendation are among the future work that we

consider.

Acknowledgements

We thank Argela for providing the user session data, G. Tzanetakis for Marsyas software, G. Karypis for

Cluto software. We thank Prof. Sule Gunduz-Oguducu of Istanbul Technical University for useful

discussions and proofreading. Author Cataltepe would like to thank Dr. Tanju Cataltepe for his continuous

support and also proofreading this work. Authors also appreciate anonymous referees’ comments which

greatly helped improve the quality of this work.

References

Ahn, H. J. (2006). Utilizing Popularity Characteristics for Product Recommendation. International Journal

of Electronic Commerce / Winter 2006–7, Vol. 11, No. 2, pp. 59–80.

Alghoniemy, M. & Tewfik, A.H. (2000) User-defined Music Sequence Retrieval. Proceedings of the eighth

ACM international conference on Multimedia. 356 - 358.

Aucouturier, J.J. & F. Pachet, F. (2002) Scaling up Music Playlist Generation. Proc IEEE Intl Conf on

Multimedia Expo.

Baccigalupo, C. & Plaza, E. (2007) A Case-Based Song Scheduler for Group Customised Radio. ICCBR

2007, LNAI 4626, pp. 433–448, 2007.

Billsus, D. & Pazzani, M.J. (1999) A Hybrid User Model for News Story Classification. Proc. the Seventh

International Conference on User modeling, Banff, Canada, 99 - 108.

Billsus, D. and Pazzani, M. 2000. User Modeling for Adaptive News Access. User-Modeling and User-

Adapted Interaction 10(2-3), 147-180.

Burke, R. (1999). The Wasabi Personal Shopper: A Case-Based Recommender System. Proceedings of the

11th Conference on Innovative Applications of Articifial Intelligence. American Association for Artificial

Intelligence. pp. 844-849.

Burke, R. (2000) A Case-Based Approach to Collaborative Filtering. Advances in Case-Based Reasoning,

pp. 370–379, 5
th

European Workshop EWCBR 2000. Springer-Verlag, New York.

Burke, R. (2002). Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-

Adapted Interaction, 12: 331-370.

18

Cataltepe, Z., & Altinel, B. (2007a). Hybrid Music Recommendation Based on Different Dimensions of

Audio Content and Entropy Measure. Proc. of Eusipco 2007 Conference, Poznan, Poland, September 2007.

Cataltepe, Z., & Altinel, B. (2007b). Hybrid Music Recommendation Based on Adaptive Feature and User

Grouping. Proc. of ISCIS 2007 Conference, Ankara, Turkey, October 2007.

Celma, O., Ramirez, M., & Herrera, P. (2005). Foafing the Music: A Music Recommendation System

Based on RSS Feeds and User Preferences. Proc. of the International Conference on Music Information

Retrieval (ISMIR) 2005.

Chai, W. & Vercoe, B. (2000) Using User Models in Music Information Retrieval Systems. Proc. of the

International Conference on Music Information Retrieval (ISMIR) 2000.

Chedrawy, Z., & Abidi, S. S. R. (2006). An Adaptive Personalized Recommendation Strategy Featuring

Context Sensitive Content Adaptation, Adaptive Hypermedia and Adaptive Web-Based Systems. LNCS

Volume 4018/2006, 61-70.

Chen, H.C., & Chen, A.L.P. (2005). A music recommendation system based on music and user grouping.

Journal of Intelligent Information Systems, Volume 24, Numbers 2-3, 113-132.

Cohen, W., & Fan, W. (2000). Web-collaborative filtering: Recommending music by crawling the Web.

Computer Networks, vol. 33, no. 1–6, pp.685–698.

Cover, T.M. & Thomas, J. A. (2006). Elements of Information Theory. Wiley.

Ghias, A., Logan, J., Chamberlin, D., & Smith, B.C. (1995). Query by humming - musical information

retrieval in an audio database. Proceedings ACM Multimedia.

Goker, M.H. & Thompson, C.A. (2000) Personalized Conversational Case-Based Recommendation.

Advances in Case-Based Reasoning, LNCS 1898/2000, 29-82.

Heckmann, D. & Kruger, A. (2003) A user modeling markup language (UserML) for ubiquitous

computing. Lecture Notes in Artificial Intelligence 2702 (2003) 393–397

Herlocker, J.L., Konstan, J.A., Terveen, L.G. & Riedl, J.T. (2004) Evaluating Collaborative Filtering

Recommender Systems. ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004, Pages

5–53.

Hoashi,K., Matsumoto, K., & Inoue, N. (2003). Personalization of user profiles for content-based music

retrieval based on relevance feedback. ACM Multimedia, pp.110–119.

Hofmann, T., & Puzicha, J. (1999). Latent Class Models for Collaborative Filtering. Proceedings of

IJCAI'99.

Jin, X., Zhou, Y. & Mobasher, B. (2005). A Maximum Entropy Web Recommendation System: Combining

Collaborative and Content Features. KDD’05, August 21–24, 2005, Chicago, Illinois, USA.

Jung, R., & Heckmann, D. (2006). Ambient Audio Notification with Personalized Music. UM ECAI’06.

19

Karypis, G. (2002). Cluto A Clustering Toolkit Manual. University of Minnesota, Department of Computer

Science Technical Report.

Kumar, R., Raghavan, P., Rajagopalan, S., & Tomkins, A. (2001) Recommendation Systems: A

Probabilistic Analysis. Journal of Computer and System Sciences. 63, 42-61 (2001)

Kuo, F.F., Chiang, M.F., Shan, M.K.,& Lee, S.Y. (2005) Emotion-based Music Recommendation by

Association Discovery from Film Music. Proc. 13th annual ACM international conference on Multimedia,

Hilton, Singapore, 507 - 510.

Lekakos, G. & Giaglis, G.M. (2007) A Hybrid Approach for Improving Predictive Accuracy of

Collaborative Filtering Algorithms. User Model User-Adap Inter. 17:5–40.

Li, T., & Tzanetakis, G. (2003). Factors in automatic musical genre classification of audio signals. Proc.

IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA).

Li, Q., Kim, B.M., Guan, D. H., & Oh, D. W. (2004). A Music Recommender Based on Audio Features.

SIGIR’04, July 25-29, 2004, Sheffield, South Yorkshire, UK.

Li, Q., Myaeng, S.H., Guan, D.H., & Kim, B.M. (2005) A Probabilistic Model for Music

Recommendation Considering Audio Features. Information Retrieval Technology. Lecture Notes in

Computer Science, Volume 3689/2005, pp. 72-83

Li, Q., Myaeng, S. H., & Kim, B. M. (2007). A probabilistic music recommender considering user opinions

and audio features. Information Processing and Management, 43, 473–487.

Lia, Y., Lu, L., & Xuefeng, L. (2005). A hybrid collaborative filtering method for multiple-interests and

multiple-content recommendation in E-Commerce. Expert Systems with Applications, 28, 67–77.

Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: Item-to-item collaborative

filtering. IEEE Internet Computing, 4(1).

Logan, B. (2004). Music recommendation from song sets. Proc. of the International Conference on Music

Information Retrieval (ISMIR) 2004.

McCarthy, K., Salao, M., Coyle, L., McGinty, L., Smyth, B., & Nixon, P. (2006) Group Recommender

Systems: A Critiquing Based Approach. IUI’06, January 29–February 1, 2006, Sydney, Australia.

McKay, C., McEnnis, D. & Fujinaga, I. (2006). A Large Publicly Accessible Prototype Audio Database for

Music Research. Proc. of the International Conference on Music Information Retrieval (ISMIR) 2006.

Pavlov, D.Y., & Pennock, DM. (2002). A Maximum Entropy Approach To Collaborative Filtering in

Dynamic, Sparse, High-Dimensional Domains. Neural Information Processing Systems (NIPS) 2002.

Pavlov, D. Y., Manavoglu, E., Giles, C. L., & Pennock, D. M. (2004). Collaborative Filtering with

Maximum Entropy. IEEE Intelligent Systems, Volume: 19, Issue: 6, 40- 47.

Pazzani, M. J. (1999) A Framework for Collaborative, Content-Based and Demographic Filtering. Artificial

Intelligence Review. 13 (5/6), 393-408.

20

Popescul, A., Ungar, L. H., Pennock, D. M., & Lawrence, S. (2001). Probabilistic Models for Unified

Collaborative and Content-Based Recommendation in Sparse-Data Environments. Proc. of the Seventeenth

Conference on Uncertainty in Artificial Intelligence (UAI-2001).

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994) GroupLens: An Open Architecture

for Collaborative Filtering of Netnews. Proceedings of the Conference on Computer Supported

Cooperative Work, Chapel Hill, NC, 175-186.

Rolland, P.Y. (2001) Adaptive User Modeling in a Content-Based Music Retrieval System. Proc. of the

International Conference on Music Information Retrieval (ISMIR) 2001.

Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001) Item-Based Collaborative Filtering

Recommendation Algorithms WWW10, May 15, 2001, Hong Kong.

Shardanand, U., & Maes, P. (1995). Social information filtering: Algorithms for automating ”Word of

Mouth”. ACM CHI’95 Conference on Human Factors in Computing Systems, 210–217.

Smyth, B. & Cotter, P. (2000). A Personalized Television Listings Service. Communications of the ACM.

August 2000/Vol. 43, No. 8

Smyth, B. & Cotter, P. (2000). A personalised TV listings service for the digital TV age. Knowledge-Based

Systems. 13, 53-59.

Typke, R., Wiering, F., & Veltkamp, R. C. (2005). A Survey of Music Information Retrieval Systems.

Proc. of the International Conference on Music Information Retrieval (ISMIR) 2005.

Tzanetakis, G., & Cook, P. (2002). Musical genre classification of audio signals. IEEE Transactions on

Speech and Audio Processing, vol. 10, no. 5, pp. 293–302.

Uitdenbogerd, A., & van Schyndel, R. (2002). A review of factors affecting music recommender success.

Proc. of the International Conference on Music Information Retrieval (ISMIR) 2002.

Vignoli, F., & Pauws, S. (2005). A Music Retrieval System Based on User-Driven Similarity and Its

Evaluation. Proc. of the International Conference on Music Information Retrieval (ISMIR) 2005.

Wang, J., de Vries, A. P., & Reinders, M. J.T. (2006). A User-Item Relevance Model for Log-Based

Collaborative Filtering. ECIR 2006, LNCS 3936, pp. 37–48.

Yapriady, B., & Uitdenbogerd, A.L. (2005). Combining Demographic Data with Collaborative Filtering for

Automatic Music Recommendation. Knowledge-Based Intelligent Information and Engineering Systems,

LNCS Volume 3684/2005.

Yoshii, K., Goto, M., Komatani, K., Ogata, T., & Okuno, H.G. (2006). Hybrid Collaborative and Content-

based Music Recommendation Using Probabilistic Model with Latent User Preferences. Proc. of the

International Conference on Music Information Retrieval (ISMIR) 2006.

