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Abstract. On high dimensional data sets choosing subspaces randomly,
as in RASCO (Random Subspace Method for Co-training, Wang et
al. 2008) algorithm, may produce diverse but inaccurate classifiers
for Co-training. In order to remedy this problem, we introduce two
algorithms for selecting relevant and non-redundant feature subspaces for
Co-training. First algorithm relevant random subspaces (Rel-RASCO)
produces subspaces by means of drawing features proportional to their
relevances measured by the mutual information between features and
class labels. We also modify a successful feature selection algorithm,
Minimum Redundancy Maximum Relevance (MRMR), to be used for
feature subset selection and introduced Prob-MRMR feature subset
selection scheme. Experiments on 5 datasets show that proposed
algorithms outperform both RASCO and Co-training in terms of the
accuracy achieved at the end of Co-training. Theoretical analysis of the
proposed algorithms is also provided.
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1 Introduction

Unlabeled data have become abundant in many different fields ranging from
bioinformatics to web mining and therefore semi-supervised learning methods
have gained great importance. The unlabeled data become available where
obtaining the inputs for data points is cheap, however labeling them is difficult.
For example, in speech recognition, recording huge amount of audio doesn’t cost
a lot. However, labeling it requires someone to listen and type. Similar situations
are valid for remote sensing, face recognition, medical imaging and etc [1].

Co-training algorithm [2] is a semi-supervised iterative algorithm, proposed
to train classifiers on different feature splits and it aims to achieve better
classification error by producing classifiers that compensate for each others’
classification error. Recently, a multi-view Co-training algorithm, RASCO [3],
which obtains different feature splits using random subspace method was
proposed and shown to result in smaller errors than the traditional Co-training
and Tri-training algorithm. RASCO uses random feature splits in order to
train different classifiers. The unlabeled data samples are labeled and added
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to the training set based on the combination of decisions of the classifiers
trained on different feature splits. However, if there are many irrelevant features,
RASCO may often end up choosing subspaces of features not suitable for
good classification. Recently Zhou and Li proposed an ensemble method, Co-
Forest, that uses random forests in Co-training paradigm [4]. Co-Forest uses
bootstrap sample data from training set and trains random trees. At each
iteration each random tree is reconstructed by newly selected examples for its
concomitant ensemble. Similarly, in [5] a Co-training algorithm is evaluated by
multiple classifiers on bootstraped training examples. Each classifier is trained
on whole feature space and unlabeled data are exploited using multiple classifier
systems. Another similar application, Co-training by Committee, is given by
Hady and Schwenker in [6]. It should be noted that all extensions of Co-training
that requires bootstrapping may need a lot of labeled samples in order to be
successful.

In this paper, instead of totally random feature subspaces, we propose two
algorithms to create subspaces for Co-training. Initial algorithm, Rel-RASCO,
produces relevant random subspaces which are obtained by means of relevance
scores of features. Mutual information between features and class labels gives
the relevance scores. In order to also maintain randomness, each feature for a
subspace is selected based on probabilities proportional to relevance scores of
features. The second algorithm, Probabilistic Minimum Redundancy Maximum
Relevance (Prob-MRMR) feature subset selection, uses MRMR feature selection
algorithm probabilisticly. Experimental results on 5 different datasets show that
proposed algorithms outperform RASCO and traditional Co-training.

2 Relevant Random Subspace Method and Probabilistic

MRMR for Co-training

We assume that we are given a classification problem with C classes. Inputs
are d dimensional real vectors x ∈ Rd. The labels are represented using 1-of-C
coding l(x) ∈ {0, 1}C = [l1(x), . . . , lC(x)]. There is a labeled dataset L which
consists of N samples. There is also an unlabeled data set U which consists of
inputs only.

Rel-RASCO selects each feature based on it’s relevance score which is
obtained using the mutual information between the feature and the class labels.
Let Fj denote feature vector where j = {1, 2, ..., d}. The mutual information,
I(Fj , l), between a feature Fj and the target classes l = l1, l2, ..., lC can be
written as:

I(Fj , l) =
∑

i,c

p(Fi,j , li,c)log
p(Fi,j , li,c)

p(Fi,j)p(li,c)
(1)

where Fi,j denotes the jth feature and li,c denotes the cth class label for the ith
training sample.

Rel-RASCO algorithm works as follows: We first discretize the features in
the labeled data set and obtain the relevance scores QScore for all the features.
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Next we normalize the scores and use them as a probability distribution Q, on
all d features. We create K subspaces, S1, . . . , SK using Qj as the probability
of selection of a feature Fj . Similar to RASCO, In Rel-RASCO also, a classifier
is trained on each one of the feature subspaces S1, ..., SK and the final classifier
is obtained by majority voting. At each iteration of co-training, one most
surely classified example from U for each class is added to L. The goal of Rel-
RASCO’s selection scheme is to select random feature subspaces which are as
relevant as possible to the class labels. Using probability of selection proportional
to relevance scores ensures that informative features are selected. Randomly
selecting features enables classifier diversity and also ability to produce as many
subspaces as needed and possible.

We also propose Probabilistic Minimum Redundancy and Maximum
Relevance feature subset selection scheme. MRMR is a feature selection method
which tries to find an ordering of features based on their relevance to the class
label [7]. MRMR also aims at selecting the next feature as uncorrelated as
possible with the current subspace of selected features. MRMR uses mutual
information as a measure of feature-feature or feature-label similarity.

Let S be the feature subspace that MRMR seeks, the redundancy of S can
be described using the within mutual information, W , of S:

W =
1

|S|2

∑

Fi,Fj∈S

I(Fi, Fj) (2)

Feature selection tries to choose an S with as small W as possible. In order to
measure the relevance of features to the target class, again mutual information
is used. Let I(l, Fi) denote the mutual information between feature Fi and the
target classes l. V , the relevance of S, is computed as:

V =
1

|S|

∑

Fi∈S

I(l, Fi) (3)

Feature selection should come up with a feature set S which is as relevant and
as nonredundant as possible.The MRMR method achieves both goals maximizing
either (V −W ) which is called MID(Mutual Information Distance) or V/W which
is called MIQ (Mutual Information Quotient). We use MID in our computations.
Probabilistic MRMR, selects the first feature by using V as a probability
distribution. Then by using redundancy scores W , MID scores are calculated
and they are used as a probility distribution for selecting the next features in
the subset. By adding randomness we are able to create diverse enough and
accurate classifiers for Co-training.

3 Analysis of Rel-RASCO and Prob-MRMR

The accuracy analysis of the proposed algorithms will be obtained by using the
RM (Recursively More) characteristic of feature spaces [7]. Let S1 and S2 be
two subspaces with n features. S1 is more characteristic, if the classification
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Algorithm 1 Rel-RASCO and Prob-MRMR Algorithm

Select random subspaces S1...Sk by using Rel-RASCO or Prob-MRMR
for i = 1 to I do

for k = 1 to K do

Project L to Lk using Sk

Train classifier Ck using Lk

end for

Label examples on U by using C = (1/K)
∑

K

k=1
Ck

Select one most surely classified example from U for each class, add them to L.
end for

error, e1 on S1 obtained by classifier C is less than the classification error, e2

on S2. Let a series of subsets of S1 obtained by a feature selection algorithm
be S1

1 ⊂ S1
2 ⊂ ... ⊂ S1

k ⊂ ... ⊂ S1
n−1 ⊂ S1

n = S1 and similarly subsets of
S2 be S2

1 ⊂ S2
2 ⊂ ... ⊂ S2

k ⊂ ... ⊂ S2
n−1 ⊂ S2

n = S2. S1 is Recursively More

characteristic (RM characteristic) than S2, if ∀k (1 ≤ k ≤ n) the classification
error e1

k < e2
k. However in most cases it is difficult to obtain e1

k < e2
k ∀k. Let

ρ (0 ≤ ρ ≤ 1) be a confidence score that gives the percentage of k values that
satisfy e1

k < e2
k. When ρ = 0.9, S1 is said to be approximately RM-characteristic

[7]. For the case of Rel-RASCO, Prob-MRMR and RASCO, we experimentally
show that ē1

k < ē2
k, i.e. mean of the initial classification accuracies for Rel-

RASCO and Prob-MRMR are smaller than that of RASCO for different subset
sizes.

When classifiers are independent, the increase in individual classifier
accuracies translates to increase in ensemble accuracy. Let each classifier in
RASCO have an accuracy p and K be odd. Then the accuracy of the ensemble
PRASCO is [8]:

PRASCO =

K
∑

m=⌊K/2⌋+1

(

K
m

)

pm(1 − p)K−m (4)

If the feature spaces obtained by relevance scores are RM-characteristics
than the features selected randomly, then each classifier in the RM-characteristic
algorithm (Rel-RASCO, Prob-MRMR) will have an accuracy p + 1/ǫ (ǫ > 0).
The accuracy of the ensemble PRM is:

PRM =

K
∑

m=⌊K/2⌋+1

(

K
m

)

(p + 1/ǫ)m(1 − (p + 1/ǫ))K−m (5)

When p > 0.5 and ǫ > 0, PRASCO and PRM are monotonically increasing,
we can state that PRM ≥ PRASCO. Note that K → ∞, PRASCO → 1, PRM → 1.
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4 Experimental Results

Experimental results are obtained on 5 different datasets: ’OptDigits’ (Optical
Recognition of Handwritten Digits), ’MFeat’ (Multiple Features) and ’Isolet’
(Isolated Letter Speech) datasets from the UCI machine learning repository [9],
’Classic-3’ text dataset from [10] and the ’Audio Genre’ dataset of [11]. Audio
Genre data set has 50 features 500 instances and 5 classes. OptDigits data set
has 64 features, 5620 instances and 10 classes. Classic-3 data set has 273 features,
3000 instances and 3 classes. Isolet data set has 617 features, 480 instances and
2 classes. Mfeat data set has 649 features 2000 instances and 10 classes.

For each dataset, experimental results for Prob-MRMR, Rel-RASCO and
RASCO are obtained on 10 different random runs. At each random run, the
whole dataset is splitted equally into a training partition and a test partition.
Training set is splitted into unlabeled training set and µ % of the rest of the
training data is used as labeled training set. PRTools [12] implementation of knn-
3 classifier is used as the base classifier. In the experiments µ is selected as 10 or
20. m = 25 features are selected by both RASCO, Rel-RASCO and Prob-MRMR
for each feature subset. Experiments are reported for different number of subsets,
K= 5, 10, 15, 20 and 25. Note that, there isn’t any natural split in the datasets
except the audio genre dataset. Therefore Co-training algorithm is evaluated on
10 random feature partitions, each of them with 10 random runs and their mean
accuracies are given. Co-training results don’t change with respect to m (the
dimensionality of subspaces) parameter. However, in order to be able to compare
results, Co-training results are also given in figures as lines and they are named
as CoTrain-B (B:at the beginning) and CoTrain-E (E:at the end). Similarly in
figures, RelRASCO-B, RASCO-B, ProbMRMR-B and RelRASCO-E, RASCO-
E, ProbMRMR-E represent the Rel-RASCO, RASCO and Prob-MRMR results
at the beginning and end of the algorithms. In the figures each row of plots
correspond to a particular data set. In each row, we report the averages of the
ensemble accuracies, averages of the individual classifier accuracies and averages
of the ensemble diversities.

Audio genre dataset: The 5 least confused genres of Tzanetakis dataset
[11], Classical, Hiphop, Jazz, Pop and Reggae, each with 100 samples, are used.
Two different sets of audio features are computed. First 30 features are extracted
using the Marsyas Toolbox [11]. Next 20 features covering temporal and spectral
properties are extracted using the Databionic Music Miner framework [13].
Parameter µ is selected as 20. Ensemble accuracies at the beginning and end of
Co-training with respect to different values of K are given in figure 1(a). CoTrain-
B and CoTrain-E ensemble accuracies are 75.28 and 69.52 respectively, which
means that Co-training does not benefit from the unlabeled data. Proposed
algorithms outperform both RASCO and Co-training. Increasing the number
of classifiers (K) increases both Rel-RASCO, Prob-MRMR and RASCO’s
accuracies, however the increase after K = 10 is not as significant as the increase
when K increases from 5 to 10.
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Fig. 1. Mean ensemble and individual test accuracies and diversities on different
datasets obtained by different algorithms with respect to K, m=25.
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UCI Optdigits dataset: Parameter µ is selected as 10 for this experiment.
Ensemble classification accuracies are given in figure 1(d). Accuracies of CoTrain-
B and CoTrain-E are 81.59 and 75.64 respectively.

Classic-3 dataset: Term Frequencies of words are used as features and
they are obtained using Term-to-Matrix generator (TMG) Matlab Toolbox
1.Parameter µ is selected as 20. Average ensemble accuracies are given in figure
1(g). CoTrain-B and CoTrain-E are 62.51 and 58.21 respectively. Co-training
accuracy at the beginning is better than Rel-RASCO and RASCO when K=5.
However increasing the classifiers increse the performance of Rel-RASCO, Prob-
MRMR and RASCO. Note that, proposed algorithms significantly outperforms
RASCO and Co-training when K ≥ 15.

UCI Isolated Letter Speech dataset: A high dimensional dataset with
617 features and 480 instances from B and C letters are used in this experiment.
Analysis are performed for µ = 10%. Ensemble accuracies are given in figure
1(j).CoTrain-B and CoTrain-E are 89.69 and 88.75 respectively. Proposed
algorithms significantly outperform RASCO and Co-training for all cases of K.

MFeat dataset: Mfeat dataset is also a high dimensional dataset with
649 features. Analysis are performed for µ = 10%. Ensemble accuracies are
given in figure 1(m). CoTrain-B and CoTrain-E are 86.64 and 92.74 respectively.
Although Co-training is the best method for K = 5, for larger values of K
proposed algorithms outperform both RASCO and Co-training

The second and third columns of Figure 1 show the average classification
accuracies of individual classifiers and diversities of ensembles. Classifier
diversities are measured using the entropy measure [8]. Figures 1(b), 1(e),
1(h), 1(k) and 1(n) show the average classification accuracies of individual
classifiers obtained for Audio genre, optdigits, classic-3, isolet and Mfeat datasets
respectively. Ensemble diversities are given in figures 1(c), 1(f), 1(i), 1(l) and
1(o) respectively. The average individual classification accuracies of the proposed
algorithms are better than that of RASCO at the beginning and at the end of
the algorithms. On the other hand, classifier diversities decrease when unlabeled
data is used, except for the classic-3 dataset. Even though the diversity of
RASCO is better than proposed algorithms, ensemble accuracies of Rel-RASCO
and Prob-MRMR are better, which may be due to the fact that the individual
classifier accuracies are better. Note that, although there are have been efforts
to explain the relationship between classifier diversity and accuracy [8], [14]
states that in problems with large number of features diversity is not a problem.
Our experimental results support this statement and show that Rel-RASCO
and Prob-MRMR produces more relevant and diverse enough classifiers that
perform better than RASCO. The classification accuracies of Prob-MRMR and
Rel-RASCO are generally similar. When d is large enough probability that
correlated features will be in the same ensemble is small. This is the reason
why Rel-RASCO performs almost as good as Prob-MRMR.

1 http : //scgroup6.ceid.upatras.gr : 8000/wiki/index.php/MainP age
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5 Conclusion

In this paper, we introduced the Rel-RASCO and Prob-MRMR algorithms which
are extensions of the Random Subspace method for Co-Training, RASCO [3].
Our purpose is to be able to select more relevant and non-redundant random
subspaces and hence increase the performance of each classifier in the ensemble.
We see that this increase translates into better Co-Training also. Rel-RASCO
and Prob-MRMR classifiers are less diverse than RASCO classifiers, but diverse
enough so that the ensemble accuracies are still more than that of RASCO.
Experimental results on 5 different datasets show that, especially for high
dimensional datasets, proposed methods outperform Co-Training and RASCO.

References

1. Roli, F.: Semi-supervised multiple classifier systems: Background and research
directions. In Oza, N.C., Polikar, R., Kittler, J., Roli, F., eds.: Proc. of 6th Int.
Workshop on Multiple Classifier Systems, Heidelberg, Springer-Verlag (2005)

2. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In:
Proc. of the 11th Annual Conference on Computational Learning Theory (COLT
’98). (1998) 92–100

3. Wang, J., Luo, S.W., Zeng, X.H.: A random subspace method for co-training. In:
International Joint Conference on Neural Networks(IJCNN 2008). (2008) 195–200

4. Li, M., Zhou, Z.H.: Improve computer-aided diagnosis with machine learning
techniques using undiagnosed samples. IEEE Transactions on Systems, Man and
Cybernetics 6 (2007) 1088–1098

5. Didaci, L., Roli, F.: Using co-training and self-training in semi-supervised multiple
classifier systems. In: Lecture Notes in Computer Science. Volume 4109. (2006)
522–530

6. Hady, M.F.A., Schwenker, F.: Co-training by committee: A new semi-supervised
learning framework. In: IEEE International Conference on Data Mining
Workshops. (2008) 563–572

7. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria
of max-dependency, max-relevance, and min-redundancys. IEEE Transactions on
Pattern Analysis and Machine Intelligence 27 (2005) 1226 – 1238

8. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-
Interscience (2004)

9. Asuncion, A., Newman, D.: UCI machine learning repository (2007)
10. Boley, D., Gini, M., Gross, R., Han, E., Hastings, K., Karypis, G., Kumar,

V., Mobasher, B., Moore., J.: Partitioning-based clustering for web document
categorization. Decision Support Systems 27 (1999) 329–341

11. Tzanetakis, G., Cook, P.: Musical genre classification of audio signals. IEEE
Transactions on Speech and Audio Processing 10(5) (2002) 293–302

12. Duin, R.: PRTOOLS A Matlab Toolbox for Pattern Recognition. (2004)
13. Moerchen, F., Ultsch, A., Thies, M., Loehken, I.: Modelling timbre distance with

temporal statistics from polyphonic music. IEEE Transactions on Speech and
Audio Processingg 14 (2006) 81–90

14. Cunningham, P., Carney, J.: Diversity versus quality in classification ensembles
based on feature selection. In: 11th European Conference on Machine Learning.
(2000) 109–116


