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Abstract. Syntactic methods in pattern recognition have been used ex-
tensively in bioinformatics, and in particular, in the analysis of gene
and protein expressions, and in the recognition and classification of bio-
sequences. These methods are almost universally distance-based. This
paper concerns the use of an Optimal and Information Theoretic (OIT)
probabilistic model [11] to achieve peptide classification using the infor-
mation residing in their syntactic representations. The latter has tradi-
tionally been achieved using the edit distances required in the respective
peptide comparisons. We advocate that one can model the differences be-
tween compared strings as a mutation model consisting of random Sub-
stitutions, Insertions and Deletions (SID) obeying the OIT model. Thus,
in this paper, we show that the probability measure obtained from the
OIT model can be perceived as a sequence similarity metric, using which
a Support Vector Machine (SVM)-based peptide classifier, referred to as
OIT SVM, can be devised.
The classifier, which we have built has been tested for eight different
“substitution” matrices and for two different data sets, namely, the HIV-
1 Protease Cleavage sites and the T-cell Epitopes. The results show that
the OIT model performs significantly better than the one which uses a
Needleman-Wunsch sequence alignment score, and the peptide classifica-
tion methods that previously experimented with the same two datasets.

Keywords: Biological Sequence Analysis, Optimal and Information Theo-
retic Syntactic Classifcation, Peptide Classification, Sequence Processing, Syn-
tactic Pattern Recognition.

1 Introduction

The syntactic methods that have been traditionally used in the analysis, recog-
nition and classification of bioinformatic data include distance-based methods,
and probabilistic schemes which are, for example, Markovian. A probabilistic
model, distinct from these, is the one proposed by Oommen and Kashyap [11].
The model, referred to as the OIT model, attains the optimal and information



theoretic bound. This paper reports the first known results in which the OIT
model has been applied in any bioinformatic application.

Peptides are relatively short amino acid chains that occur either as sepa-
rate molecules or as building blocks for proteins. Apart from their significance
in analyzing proteins, peptides themselves may have various distinct chemical
structures that are themselves related to different molecular functions. These
functions, such as cleavage or binding, while being interesting in their own right,
have also been shown to be important in areas such as biology, medicine, drug
design, disease pathology, and nanotechnology Indeed, for more than a decade,
researchers have sought computational techniques to rapidly identify peptides
that are known to be, or can be, related to certain molecular functions.

The research in peptide classification is not new –indeed, a host of tech-
niques have been proposed for in silico peptide classification4. In 1998, Cai and
Chou [3] presented one of the pioneering works in this area. They classified 8-
residue peptides and used artificial neural networks with 20 input nodes per
residue, thus involving a total of 160 input nodes. In their work, each amino
acid was encoded using 20 bits so that the 20 amino acids were encoded as
A = 100 . . . 00, B = 010 . . . 00, . . . , Y = 000 . . . 01. Similarly, Zhao et al. [15]
mapped the amino acid sequences of peptides directly into feature vectors and
fed them into a Support Vector Machine (SVM). They, however, represented
the amino acids by a set (more specifically, ten) of their biophysical properties,
such as hydrophobicity or beta-structure preference, instead of an orthonormal
representation, as advocated by [3]. By resorting to such a representation, they
were eventually able to reduce the dimensionality of the input space by 50%.
To further increase the information density of input vectors, Thomson et al.
[13] used bio-basis artificial neural networks, which are a revision of radial-basis
function networks, that use biological similarities rather than spatial distances.
This work was subsequently enhanced by Trudgian and Yang [14] by optimizing
the substitution matrices that are used to compute the latter biological similar-
ities. Kim et al. [8] followed a rule-based approach to achieve results which were
interpretable. It should be mentioned that there were also earlier studies based
on the properties of quantitative matrices, binding motifs and hidden Markov
models, which should really be treated as precursors to the results cited above.
The differences between our results and those which use Hidden Markov Models
(HMMs) will be clarified presently.

A completely different sequence representation technique was introduced in
the area of protein fold recognition by Liao and Noble [9]. Liao and Noble rep-
resented protein sequences by their pairwise biological similarities, which were
measured by ordinary sequence alignment algorithms. Subsequently, by consider-
ing these similarities as feature vectors, relatively simple classifiers were trained
and successfully utilized for classifying and discriminating between different pro-
tein folds.

4 The review and bibliography presented here is necessarily brief. A more detailed
review is found in [1].



The primary intention in this study is to use a SVM-based classifier in achiev-
ing the classification and discrimination. However, rather than use distances, we
shall advocate the use of a rigorous probabilistic model, namely one which has
been proven to be both optimal and to attain the information theoretic bound.
Indeed, in this study, we combine the strategy of Liao and Noble (i.e., to use
pairwise SVM classifiers) with a probabilistic similarity metric, and to success-
fully classify peptides. Observe that, instead of resorting to the alignment scores,
we quantify the similarity by means of their Optimal and Information Theoretic
(OIT) garbling probabilities as described by Oommen and Kashyap [11]. The lat-
ter OIT garbling probability is the probability of obtaining a sequence Y from
a sequence U based on the OIT mutation model, whose properties will be clar-
ified later. One clear difference between the alignment scores and OIT garbling
probabilities is that whereas an alignment score considers only the shortest path
between two sequences, the OIT garbling probabilities covers all possible paths.
Furthermore, since it assigns a probability mass to every possible path (i.e.,
possible garbling operations), it contains more information about the similarity
between the two sequences.

It is pertinent to mention that a similar transition probability measurement
based on HMMs was earlier proposed by Bucher and Hofman [2]. Indeed, since
then, HMM-based similarity metrics have been used in many biological appli-
cations. The difference between our work and the ones which use HMMs can
be, in all brevity stated as follows: Unlike the latter, the OIT model permits
non-Geometric-based distributions for the number of insertions occurring in any
sequence of mutations [1, 11]. Additionally, the superiority of OIT model, say Π∗,
to “distance-based” approaches are (a) Π∗ is Functionally Complete because it
comprehensively considers all the ways by which U can be mutated into Y using
the three elementary Substitutions, Insertions and Deletions (SID) operations,
(b) The distributions and the parameters involved for the various garbling op-
erations in Π∗ can be completely arbitrary, (c) Π∗ captures the scenarios in
which the probability of a particular string U being transformed into another
string Y , is arbitrarily small, (d) For a given U , the length of Y is a random
variable whose distribution does not necessarily have to be a mixture of Geo-
metric distributions, and (e) If the input U is itself an element of a dictionary,
and the OIT channel is used to model the noisy channel, the technique for com-
puting the probability Pr [Y |U ] can be utilized in a Bayesian way to compute
the a posteriori probabilities, and thus yield an optimal, minimum probabil-
ity of error pattern classification rule. Most importantly, however, in both the
Bayesian and non-Bayesian approaches, the OIT model actually attains the in-
formation theoretic bound for recognition accuracy when compared with all the
other models which have the same underlying garbling philosophy These issues
are also clarified in greater detail in [1, 11].

We have tested our solution, the OIT SVM, which involves the combination
of the SVM-pairwise and the OIT model, on two peptide classification problems,
namely the HIV-1 Protease Cleavage site and the T-cell Epitope prediction prob-
lems. Both of these problems are closely related to pharmacological research work



that has been the focus of a variety of computational approaches [3, 8, 13–15].
The results, which we present in a subsequent section, indicate that our solu-
tion paradigm leads to an extremely good classification performance for both
problems.

2 Modeling – The String Generation Process

We now describe the model by which a string Y is generated given an input
string U ∈ A∗, where A is the alphabet under consideration, and ξ and λ are
the input and output null symbols, respectively.

First of all, we assume that the model utilizes a probability distribution G
over the set of positive integers. The random variable in this case is referred to as
Z, and is the number of insertions that are performed in the mutating process. G
is called the Quantified Insertion Distribution, and in the most general case, can
be conditioned on the input string U . The quantity G (z|U) is the probability
that Z = z given that U is the input word. Thus, G has to satisfy the following
constraint: ∑

z≥0

G (z|U) = 1. (1)

The second distribution that the model utilizes is the probability distribution
Q over the alphabet under consideration. Q is called the Qualified Insertion
Distribution. The quantity Q (a) is the probability that a ∈ A will be the inserted
symbol conditioned on the fact that an insertion operation is to be performed.
Note that Q has to satisfy the following constraint:∑

a∈A
Q (a) = 1. (2)

Apart from G and Q, another distribution that the model utilizes is a prob-
ability distribution S over A × (A ∪ {λ}), where λ is the output null symbol.
S is called the Substitution and Deletion Distribution. The quantity S (b|a) is
the conditional probability that the given symbol a ∈ A in the input string is
mutated by a stochastic substitution or deletion –in which case it will be trans-
formed into a symbol b ∈ (A ∪ {λ}). Hence, S (c|a) is the conditional probability
of a ∈ A being substituted for by c ∈ A, and analogously, S (λ|a) is the con-
ditional probability of a ∈ A being deleted. Observe that S has to satisfy the
following constraint for all a ∈ A:∑

b∈(A∪{λ})

S (b|a) = 1. (3)

Using the above distributions we now informally describe the OIT model for
the garbling mechanism (or equivalently, the noisy string generation process). Let
|U | = N . Using the distribution G, the generatorfirst randomly determines the
number of symbols to be inserted. Let Z be random variable denoting the number
of insertions that are to be inserted in the mutation. Based on the output of the



random number generator, let us assume that Z takes the value z. The algorithm
then determines the position of the insertions among the individual symbols of
U . This is done by randomly generating an input edit sequence U ′ ∈ (A ∪ {ξ})∗.

We assume that the
(
N + z
z

)
possible strings are equally likely.

Note that the positions of the symbol ξ in U ′ represents the positions where
symbols will be inserted into U . The non-ξ symbols in U ′ are now substituted for
or deleted using the distribution S. Finally, the occurrences of ξ are transformed
independently into the individual symbols of the alphabet using the distribution
Q. This defines the model completely. The process followed by the model, and its
graphical display, are formally included in the unabridged version of this paper,
and omitted here in the interest of brevity [1]. The theoretical properties of the
OIT model can be found in [11].

3 Proposed Methodology

In this section, we provide the explicit details of the syntactic probabilities of
the OIT model, and also explain the way by which we utilize it together with
the SVM-pairwise scheme for peptide classification.

For a mutation consisting of random SID operations as per the OIT model,
Oommen and Kashyap [11] have derived the syntactic probability of obtaining
the sequence Y = y1y2 . . . yM , from the sequence U = u1u2 . . . uN as:

P (Y | U) =
M∑

z=max{0,M−N}

G (z) N ! z!
(N + z)!

∑
U ′

∑
Y ′

N+z∏
i=1

p (y′i | u′i) ,

where G(z) is the probability of inserting z elements into U , and p (y′i | u′i) is
the probability of substituting the symbol element u′i with the symbol element
y′i. Observe that in the above,

u′i = ξ ⇒ y′i 6= λ, and y′i = λ⇒ u′i 6= ξ.

The sum over the strings U ′ = u′1u
′
2 . . . u

′
N+z and Y ′ = y′1y

′
2 . . . y

′
N+z (of the

same length), represent the sum over all possible pairs of strings U ′ and Y ′ of
equal length N + z, generated by inserting ξ’s into random positions in string
U , and λ’s into random positions in strings Y respectively, and which are to
represent the insertion and the deletion operations respectively. Although this
requires a summation over a combinatorially large number of elements (repre-
sented by U ′ and Y ′), Oommen and Kashyap [11] have shown that this can be
computed in an extremely efficient manner in cubic time, i.e., with complexity
O (M ·N ·min {M,N}). Based on the work of Oommen and Kashyap [11], we
have programmed our own toolkit to efficiently compute the syntactic probabil-
ities between two arbitrary sequences, and adapted the tools to the particular
application domain.

We now consider how the OIT model can be utilized for the particular prob-
lem at hand. The reader will observe that the OIT model essentially requires



three “parameters” namely, S for the Substitution/Deletion probabilities, Q, for
the insertion distribution, and G. With this as the background, we list the issues
crucial to our solution:

1. The input and output alphabets in our application domain consist of twenty
amino acids and one gap element, which for the input strings is the null
symbol, ξ, representing an inserted element, and for output strings is the
null symbol, λ, representing a deleted element.

2. The substitution of an amino acid with another corresponds to a series of mu-
tations in the biological context. Based on this premise, we have computed
our substitution probabilities on the mutation probability matrix refereed
to as PAM1 derived by Dayhoff et al. [5]. PAM1 is a 20× 20 matrix, M, where
each cell mij corresponds to the probability of replacing amino acid i with
amino acid j after 1% of the amino acids are replaced. Indeed, it is possible
to generate matrices for a series of longer mutations using successive multi-
plications of PAM1, and thus, for example, PAM250 is equal to PAM249×PAM1
[5].

3. The first major deviation from the traditional PAM matrices involves the oper-
ation of deletion. Observe that PAM matrices generally do not specify deletion
probabilities for amino acids. As opposed to this, the OIT model of Oommen
and Kashyap [11] suggests that an element can be deleted (substituted by
λ) as well as substituted by another element. In this vein, we advocate that
the matrix PAM1 be extended by appending another column for λ, where the
value ∆ is assigned to the deletion probabilities of amino acids, and where
each row is normalized to satisfy the probability constraint:∑

y∈A∪{λ}

p (y | u) = 1, (4)

where A is the set of all amino acids, and u is the amino acid corresponding
to the row.

4. There is no standard method of determining the deletion probabilities of
amino acids. Comparing the widely-used gap penalties as per [12] to the
log − odd PAM matrices, we opted to use ∆ = 0.0001. The question of how
to optimally determine ∆ is open, and we are currently considering how it
can be obtained from a training phase using known Input/Output string
patterns.

5. The second major deviation from utilizing the traditional PAM matrices in-
volves the operation of insertion. As in the case of deletion, we propose to
extend the new PAM matrix by appending a row for ξ and assigned to p (y | ξ)
(i.e. the probability that a newly inserted amino acid is y) the relative fre-
quency of observing y, f (y). In our experiments, the relative frequencies
were computed in a maximum likelihood manner by evaluating the limit of
the PAMn matrix as n goes to infinity, i.e., as each row of the limiting matrix
converges to f (y). Finally, the remaining cell of our extended PAM matrix,
p (λ | ξ), is, by definition, equal to zero. The resulting matrix has been re-
ferred to as the OIT PAM matrix, and is a 21 × 21 matrix. Table 1 gives



a typical OIT PAM matrix for the amino acid application domain. Observe
that as in the case of the traditional PAM matrices, it is possible to derive
higher order OIT PAM matrices for longer mutation sequences by multiplying
OIT PAM1 by itself. In our work, we have experimented with OIT PAM ma-
trices of different orders to observe the effect of different assumptions that
concern evolutionary distances.

6. The final parameter of the OIT model involves the Quantified Insertion
distribution, G (z), which specifies the probability that the number of inser-
tions during the mutation is z. In our experiments, we have assumed that
the probability of inserting an amino acid during a single PAM mutation is
equal to the deletion probability of an amino acid, ∆. This assumption leads
to the conclusion that for longer mutation series, the insertion distribution
converges to a Poisson distribution such that

G (z) = Poisson (z;n∆) =
(n∆)z e−∆n

z!
, (5)

where n is the number of PAMs (i.e. the length of the mutation series). In
other words, we have currently used Poisson (z;n∆) as the insertion distri-
bution whenever we use OIT PAMn as the substitution probability matrix.

7. Using the OIT model and the parameters assigned as described above, a
classification methodology based on the SVM-pairwise scheme proposed by
Liao and Noble [9] was devised. This will be explained in the next subsection.

Having explained how the OIT-based scheme works, we shall now also present
the results obtained from our experiments.

4 Experimental Results and Discussions

4.1 Experimental Setup

In our experiments, we used two peptide classification data sets, which are ac-
cepted as benchmark sets. The first one, referred to as HIV, was produced for
the HIV-1 Protease Cleavage sites prediction problem by Kim et al. [8]. This set
contains 754 8-residue peptides with 396 positives and 358 negatives. The sec-
ond data set, referred to as TCL, was produced for the T-cell Epitope prediction
problem by Zhao et al. [15], and it contains 203 10-residue peptides of which 36
were positives and 167 were negatives.

As mentioned earlier, our classification scheme was based on the SVM-pairwise
scheme proposed by Liao and Noble [9] to detect remote evolutionary relation-
ships between proteins. According to our scheme, m representative peptides
were chosen a priori from the training set. Subsequently, for each instance, an
m-dimensional vector of scores was computed by comparing the instance to the
representatives. The classifiers were trained and tested with these feature vec-
tors.

As a computational convenience, we used the logarithm of the OIT probabil-
ity as the measure of similarity because the logarithm is a monotonic function,



and it turns out that this can be computed more efficiently than the original
OIT probabilities. To compare the performance of the OIT SVM to the stan-
dard measures, we have also used the Needleman-Wunsch (NW) alignment score
[10], which is a commonly used sequence comparison method in bioinformatics,
to achieve an analogous classification. Our representative peptides were chosen
to be the positive training instances, and in each case, we used eight different
substitution matrices with mutation lengths 10, 50, 100, 200, 250, 300, 400 and
500.

Each feature set was tested on a SVM classifier with a linear kernel. Prelim-
inary evaluation showed that SVM with a linear kernel performs slightly better
than SVM with a radial-basis kernel on all feature sets. Depending on this ob-
servation, we fixed the classifier prior to the experiments and focused on the
comparison of feature sets. In the testing phase, we estimated the performance
of different methods by means of a cross-validation process. To do this, we di-
vided the HIV data set into ten partitions and the TCL data set, which is rather
small, into five partitions as was done in [8] and [15] respectively. We refrained
dividing TCL data set into more than five partitions because the number of pos-
itive examples is too low that it prevents us from providing necessary variation
across the partitions. This choice also makes our results compatible with the re-
sults of [15]. Finally, we also ensured the preservation of the ratio of positive and
negative instances across the partitions. All the classification and performance
estimations were performed on the Mathworks MATLAB [7] system with the
help of the PRTools 4.1 pattern recognition toolbox [6] and the LIBSVM 2.88
support vector machine library [4].

4.2 Experimental Results and Discussions

The performance of the OIT-based features were compared to the scores obtained
by a Needleman-Wunsch (NW) alignment strategy. In each case, and for each
of the experiments, we recorded the area under the ROC (AUC), the Accuracy
(Acc), the Sensitivity (Sens) and the Positive Predictive Value (PPV). Tables
2 and 3 show the averaged values and average widths of the 95% confidence
intervals for the HIV and TCL data sets, respectively. It is worth mentioning
that the OIT-based scheme is uniformly superior to the NW-based scheme, and in
some cases the superiority is categorically marked –for example, whereas the best
accuracy for the NW-based method is 85.7%, the corresponding best accuracy
for the OIT-based scheme is 91.7%.

Also note that the 95% confidence intervals are generally wider for the TCL
dataset than they are for the HIV dataset. This is because the cross validation
was performed through a five-fold strategy on the former, and through a ten-fold
strategy on the latter.

For the HIV data set, [8] report accuracies for ten different methods, and our
OIT-based method outperforms nine of them, while the accuracy of the tenth
is marginally better. With regard to the TCL data set, it should be mentioned
that the OIT SVM leads to better results than those reported by [15] –when it
concerns any performance criterion.



The behaviors of the two methods for different score matrices can be seen
in Figures 1.These two figures display how the AUCs vary as the assumption
of the mutation lengths increases from 10 PAMs to 500 PAMs. The reader will
observe that for the HIV data set, both the OIT and the NW reach their highest
performances between 100 and 300 PAMs. For the TCL data set, however, the
NW prefers PAM400. When it concerns the means of the average AUCs, it should
be mentioned that the OIT outperforms the NW even in its worst cases. Table 4
records the t-test results that validate this observation. Also, the average widths
of the confidence intervals point to the conclusion that the OIT leads to more
robust classifications than the NW.
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Fig. 1. The figure on the left displays the behavior of the OIT and NW similarity
metrics on the HIV data set when the mutation length assumption changes between
10 PAMs and 500 PAMs. The figure on the right displays the corresponding behavior
of the OIT and NW similarity metrics for the TCL data set. In each case, the error
bars display the respective 95% confidence intervals.

5 Conclusions

In this paper, we have considered the problem of classifying peptides using syn-
tactic pattern recognition methodologies. Unlike the traditional distance-based
or Markovian methods, we have considered how the pattern recognition can
be achieved by using the Optimal and Information Theoretic (OIT) model of
Oommen and Kashyap [11]. We have shown that one can model the differences
between the compared strings as a mutation model consisting of random SID
operations which obeys a OIT model. Consequently, by using the probability
measure obtained from the OIT model as a pairwise similarity metric, we have
devised a Support Vector Machine (SVM)-based peptide classifier, referred to
as OIT SVM. The classifier has been tested for eight different “substitution”
matrices and for two different data sets, namely, the HIV-1 Protease Cleavage
sites and the T-cell Epitopes, and the results obtained categorically demonstrate



that the OIT model performs significantly better than the one which uses a
Needleman-Wunsch sequence alignment score. Further, when combined with a
SVM, it leads to, probably, the best peptide classification method available.

The avenues for future work include the learning of the PAM matrices using
maximum likelihood or Bayesian methods. Also, the use of an OIT model for
other bioinformatic pattern recognition problems remains open.
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Table 2. The performance measurements for the HIV data set using the OIT and NW
metrics. The highest value over each column is shown in bold. The last row displays
the average widths of the 95% confidence intervals (Avg. w) for each measurement.

(O)PAM OIT NW

AUC Acc Sens PPV AUC Acc Sens PPV

10 0.948 0.887 0.863 0.884 0.906 0.839 0.821 0.837

50 0.962 0.902 0.891 0.904 0.909 0.849 0.841 0.843

100 0.968 0.917 0.897 0.927 0.917 0.846 0.846 0.833

200 0.969 0.911 0.877 0.932 0.927 0.857 0.833 0.862

250 0.965 0.913 0.874 0.938 0.925 0.853 0.830 0.857

300 0.965 0.911 0.863 0.948 0.921 0.849 0.829 0.852

400 0.958 0.901 0.849 0.937 0.912 0.849 0.838 0.848

500 0.949 0.893 0.830 0.938 0.924 0.846 0.813 0.859

Avg. w 0.011 0.018 0.037 0.021 0.019 0.025 0.040 0.029

Table 3. The performance measurements for the TCL data set using the OIT and NW
metrics. The highest value over each column is shown in bold. The last row displays
the average widths of the 95% confidence intervals (Avg. w) for each measurement.

(O)PAM OIT NW

AUC Acc Sens PPV AUC Acc Sens PPV

10 0.918 0.852 0.922 0.901 0.883 0.837 0.928 0.882

50 0.937 0.872 0.934 0.912 0.892 0.842 0.922 0.891

100 0.943 0.882 0.929 0.928 0.889 0.847 0.922 0.895

200 0.947 0.897 0.940 0.935 0.889 0.853 0.905 0.917

250 0.944 0.902 0.946 0.936 0.885 0.853 0.893 0.927

300 0.945 0.887 0.940 0.924 0.895 0.852 0.916 0.905

400 0.939 0.887 0.946 0.919 0.904 0.867 0.911 0.928

500 0.936 0.882 0.929 0.928 0.819 0.793 0.881 0.871

Avg. w 0.016 0.023 0.022 0.020 0.028 0.030 0.041 0.021

Table 4. The t-test results for the 1% significance level comparing the AUC values of
the OIT and NW based schemes.

(O)PAM HIV TCL

OIT > NW p-value OIT > NW p-value

10 no 0.013 no 0.018

50 yes 0.001 no 0.025

100 yes <0.001 no 0.047

200 yes <0.001 no 0.014

250 yes <0.001 yes <0.001

300 yes <0.001 no 0.015

400 no 0.012 yes 0.001

500 no 0.014 yes 0.001


