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Abstract—When in addition to node contents and labels,
relations (links) between nodes and some unlabeled nodes
are available, collective classification algorithms can be
used. Collective classification algorithms, like ICA (Iter-
ative Classification Algorithm), determine labels for the
unlabeled nodes based on the contents and/or labels of the
neighboring nodes. Feature selection algorithms have been
shown to improve classification accuracy for traditional
machine learning algorithms. In this paper, we use a
recent and successful feature selection algorithm, mRMR
(Minimum Redundancy Maximum Relevance, Ding and
Peng, 2003), on content features. On two scientific paper
citation data sets, Cora and Citeseer, when only content
information is used, we ahow that the selected features may
result in almost as good performance as all the features.
When feature selection is performed both on content
and link information, even better classification accuracies
are obtained. Feature selection considerably reduces the
training time for both content only and ICA algorithms.
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I. INTRODUCTION

Learning problems with network information [1], [2],
where for each node its features and relations with
other nodes are available, become more common in our
lives. Examples include social, financial, communication,
electrical, computer, semantic, ecological, chemical re-
action, gene regulatory and spin networks. Classification
of nodes or links in the network, discovery of links or
nodes which are not yet observed or identification of
essential nodes or links, are some of the research areas
on networked data. Availability of vast amount of nodes
or features, unreliability of some of the link information
are some of the common problems of these kind of data.
Collective classification algorithms [4] consist of a set of
classification algorithms for networked data. In collective
classification, the content and link information for both
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training and test data are available. First, based on the
available training content, link and label information,
models are trained. Then, those models are used to label
the test data simultaneously and iteratively where each
test sample is labeled based on its neighbors.

Especially for problems with too many, correlated or
noisy features, feature selection methods [3] have been
used in pattern recognition for a long time. Feature
selection not only helps with the accuracy of the learned
models but also with the learning and testing time and
explanation of decisions arrived at. mRMR (Minimum
Redundancy Maximum Relevance) [11] is a recent fast
and accurate feature selection method. mRMR uses both
the input and label information when selecting features,
but it does not actually train models, therefore is much
faster than the wrapper [3] type feature selection methods
such as forward or backward feature selection.

Feature selection for networked data is one of the
new and interesting research topics. In this paper, we
use feature selection on both content and link features.
Our experiments on two paper citation datasets show that
feature selection results in almost as accurate classifiers
as the full feature set, while the training time of the clas-
sifiers are tremendously reduced with feature selection.

A. Collective Classification

In traditional machine learning, the observed and
unobserved samples are assumed to be drawn indepen-
dently from an identical distribution. Classification prob-
lems are solved using only samples’ features (content)
and labels. Connections/dependencies/relations between
samples are not taken into consideration. However, in
addition to content, connectivity information is often
available and connectivity can be an important factor in
determining the node labels. For example, papers which
are on a certain topic, usually cite or are cited by other
papers on the same topic, people who are interested
in a certain product have close friends who could be



interested in the same product. Link-based classification
takes into consideration the links between the objects in
order to improve the estimation performance. Attributes
of objects and links together can be considered as
the features of the nodes. However, when two linked
samples are not yet classified, they require each others
labels to decide their own label. This situation could get
even more complicated when links create cycles in a
vast network [2]. Collective classification algorithms are
proposed to overcome such problems.

Collective classification methods classify test objects
in a network simultaneously. In these methods, the label
of a sample in a network may affect the label of its
neighbours, or even its neighbours’ neighbours [1].

There exist collective classification algorithms that can
infer exactly the right labels in a graph under certain con-
ditions, but they are impractical and infeasable especially
for large datasets. As a result, instead of exact inference
which is thought to be an NP-Hard problem, approximate
inference algorithms are developed [4]. Although, these
algorithms are not always guaranteed to provide the right
solution, they are feasible in terms of their computation
time requirements.

Collective classification uses three types of informa-
tion about a node, to determine the node’s label in
networked data:

1) The node’s own observed attributes
2) Observed attributes and labels of its neighbours
3) Unobserved labels of its neighbours

The third type of information is required because all
the nodes in a network are usually initially unlabeled [4].
In such situations, it is also required to bootstrapping is
used to decide on the initial labels. One bootstraping
method is to determine the initial labels by using only
the first type of information (Content only) [5].

All collective classification algorithms take advantage
of a base classifier to classify the nodes. Classifiers use
link (relational) and content features [5].

Loopy belief propagation (LBP), mean field relaxation
labeling (MF) and iterative classication algorithm (ICA)
are popular approximate inference algorithms used for
collective classification [2]. In this paper, we report
our experiments using the ICA (Iterative Classification
Algorithm) as our collective classification algorithm,
whose details are given in Section II-A.

B. Feature Selection

As in any other classification method, in collective
classification too, some features in the dataset may be
noisy and/or irrelevant to the label or some subset of

features may be adequate for labeling causing other
features to be redundant. In such cases, determining and
using a specific subset of features could result in a faster
and more accurate solution.

A similar redundacy in features can be observed in the
connections between the nodes, too. Some of the rela-
tions may worsen the performance of the classification,
thus eliminating the unnecessary connections from the
graph is beneficial in terms of both running time and
accuracy.

Feature selection methods are divided into two cat-
egories according to their working principles: Feature
selection/ordering methods create a group of features of
desired number while feature subset selection methods
create the best subset of features without intervention [7].
Another categorization of feature selection methods can
be made according to how they interact with learning
algorithms. Filter methods that are fast, scalable and
modular, work independently from the learning algo-
rithm. Wrapper methods, on the other hand, are guided
for their search by a learning algorithm. They are less
scalable and more likely to overfit data. They require
training and validation, so they are slower, however
they achieve better accuracy. Finally, embedded feature
selected methods, that work faster than wrappers, are
optimized specifically for a learning algorithm and they
are installed into it [3]. All feature selection methods
have 6 main characteristic properties which distinguish
them. These properties are the initial state of search,
creating successors, search strategy, feature evaluation
method used, including or not including the interdepen-
dence of features and halting criterion [8].

The feature selection method chosen in this paper is
the Minimum Redundancy Maximum Relevance Feature
Selection (mRMR) [11], which is a filter method that
makes use of the features and labels at the same time.
Please see Section II-B for more details.

II. METHODS

Detailed descriptions of ICA (Iterative Classification
Algorithm), which is applied for collective classification
and mRMR (minimum Redundancy Maximum Rele-
vance) method, which is applied for feature selection
are given in this section.

A. Iterative Classification Algorithm

To determine the label of a node, ICA assumes that
all of the neighbours’ attributes and labels of that node
are already known. Then, it calculates the most likely
label with a local classifier which uses node content and



neighbours’ labels. However, it is extremely rare to find a
node with all of its neighbours labelled. So, ICA repeats
the process iteratively until all of the assignments stabi-
lize. One problem is all nodes do not have equal number
of neighbours. This makes it hard to implement the local
classifier which should take constant number of inputs.
To overcome this difficulty, an aggregation operator such
as count, mode or exists is used. For example, count
operator returns the number of the occurrences of each
label in the neighbours [4].

In this paper, logistic regression is chosen as the
local classifier of the iterative classification algorithm,
while count aggregation operator is used to represent
the relational features [2]. The algorithm for ICA (based
on [4]) is given below. In pseudo code, OA represents
observed attributes(content) of the samples. Y represents
the unlabeled data and y; stands for temporary label
assignment of sample Y;. g is the result of local classifier
which shows the probability of getting label y; for
sample Y;. O is the random ordering of nodes in every
step of the iteration.

Iterative Classification Algorithm (ICA)

for all Y; €Y do
Compute g(yi|vn(v;)mw) only using OA(Yi|zy(y,))
Vy; € C.
Set y; « argmaxy g(y|vn(y,))
end for
repeat
Generate Ordering O over nodes Y
for all Y; € O do
Compute g(yi|vn(v,)mw) Yyi € C.
Yi < argmaxy g(f‘/’”N(Yi))
end for
until labels are stabilized

As shown above, the Iterative Classification Algorithm
(ICA) starts with a bootstrapping to assign initial and
temporary labels to all nodes by using only the content
features of the nodes. Then, it starts iterating and updat-
ing labels according to the both relational and content
features [9].

B. Minimum Redundancy Maximum Relevance

Identification of the most relevant features to the labels
of the nodes can improve the efficiency of the classifica-
tion process. One way of selecting features is to include
features with highest correlation to the label, which is
called maximum-relevance selection. An improvement
to this method is including the features that correlate
highest to the label but are as unrelated to each other as

possible. This selection is more powerful than maximum-
relevance selection as it minimizes redundancy [10].
Redundancy not only causes worse running time but it
also reduces the accuracy of the classification.

To determine both feature-label and feature-feature
correlations, mutual information is used. Mutual in-
formation measures the nonlinear correlations between
features and is useful for both discrete or continuous
variables. Mutual information for two discrete variables,
x and vy, is computed by using their marginal prob-
abilities, p(z) and p(y), and their joint probabilistic
distribution, p(x,y) as shown below [11].

I(m, y) = Zm’ P(xia yj) log %

Including the features which have high mutual infor-
mation with the labels and excluding the features that
have high mutual information among themselves is pref-
ered for better identification of the most characteristic
features [11].

III. EXPERIMENTS
A. Data Sets

In this section, we give details on the CoRA and
CiteSeer scientific citation datasets, which are used in
the experiments below.

1) CoRA: CoRA data set consists of information on
2708 Machine Learning papers. Every paper in CoRA
cites or is cited by at least one other paper in the data
set. There are 1433 unique words that are contained at
least 10 times in these papers. There are also 7 classes
assigned to the papers according to their topics. For each
paper, whether or not it contains a specific word, which
class it belongs to, which papers it cites and which papers
it is cited by are known. Citation connections and paper
features (class and included words) are contained in two
seperate files [12]. Total number of connections between
the papers is 5429 [13]. There are 4.01 links per paper
[14].

2) CiteSeer: CiteSeer data set consists of information
on 3312 scientific papers. Every paper in CiteSeer also
cites or is cited by at least one other paper in the data set.
There are 3703 unique words that are contained at least
10 times in these papers. There are 6 classes assigned to
the papers according to their topics. Just as in the CoRA
dataset, word, class and cites and cited by information
are given in two separate files [15]. Total number of
connections between the papers is 4732 [13]. There are
2.77 links per paper [14].



Table I shows the total number of features in the last
line and certain percentages of features for both CoRA
and CiteSeer data sets. Iterative classification algorithms
are run with feature selection, using the number of
features given for each data set.

TABLE 1
SELECTED NUMBERS OF FEATURES FOR DIFFERENT
PERCENTAGES
Percentage CoRA  CiteSeer
1 14 37
5 72 185
10 143 370
20 287 741
35 502 1296
100 1443 3703

B. Experimental Setup

This section describes the sampling of the data for the
experiments and the base-classifier used.

1) Sampling: Data sets are splited into training and
validation sets. Two methods are used for creating these
partitions: k-fold cross-validation and snowball sam-
pling.

In k-fold cross-validation nodes are splited into k
random partitions. k times, k-1 of those partitions are
used as train data, while the remaining one is left for
validation [4]. Validation is performed k times to ensure
that each subsample is used for validation exactly once
and also to have an errorbar on the validation accuracy.
When the number of links per node is low, k-fold
sampling generates nearly disconnected graphs. k has
been chosen to be 5 in our experiments.

To overcome the issue of disconnected graphs in k-
fold cross validation, snow ball sampling is used. In this
sampling method, after selecting the first node randomly,
continuously the neighbours of the selected node are
added to the subset. As a result, the generated subset
is interconnected and balanced. Selected subset is used
as the test data while remaining nodes compose the train
subset. Snowball sampling is repeated k times to obtain
k training-validation pairs [4].

2) Classifier: Logistic regression is used as the local
classifier during the experiments. Logistic regression
which 1s a discriminative model, determines conditional
class probabilities without modelling the marginal distri-
bution of features [16]. Logistic regression classifier can
also be thought of as a one layer multilayer perceptron
with its own special training algorithm.

C. Experimental Results

In the experiments, content only classification (CO)
and ICA algorithm are compared for different percent-
ages of features. When content only classification is
performed, only the content features and node labels are
used together with a logistic regression classifier. For
each of the feature percentages given in table I, a separate
set of k=5 training/validation experiments are performed.
As it can be seen from table II, accuracy values generally
increase along with the number of features. On the other
hand, high accuracy values, nearly as high as the full
data set, are achieved using only a small set of features.
It is possible to get ICA results with acceptable accuracy
with only 1% of the features in a much shorter time. The
errorbars on the accuracies given in Table II are around
0.05.

When snowball sampling is used, the test accuracies
are slightly higher for CiteSeer data set which contains
less links per node, while k-fold sampling resulted in
better accuracies than snowball sampling for CoRA data
set which has more links.

It is also obvious from the results that iterative clas-
sification algorithm performs far better than the content
only classification in all the experiments. This proves the
importance of using network neighborhood information
along with the content information.

Table III shows the average duration of k=5-fold ex-
periments for each dataset and algorithm as the number
of features increases. As seen in the table, as the number
of features increase, algorithms take longer to run. With
ICA, when only 5% of features are used, it is possible
to spend only 28% (Cora) or 15% (Citeseer) of the time
used for the full feature set. In addition, the accuracies
achieved are still comparable to that of the full feature
set.

TABLE III
TIME(SECONDS)
Cora Citeseer
Percentage CO ICA CO ICA
1 6.102 8.298 4.296 8.838
5 8.059 8.248 6.583  11.967
10 10.503 10.655 10919 16.555
20 18.259 11.523 25481 24.311
35 22412 18.493 32.753 33.969
100 67.785 28.938 92.533 82.741

Figures 1 and 2 show the weights for each feature
(content and neighbor class count) at the end of the lo-
gistic regression training for logistic regression classifiers



TABLE I

RESULTS
CoRA CiteSeer
k-fold Snowball k-fold Snowball
Percentage CO ICA CcO ICA CO ICA CO ICA
1 0.6022 0.8689 0.3807 0.4044 0.6537 0.7591 0.6743 0.7565
5 0.6899 0.8719 0.5296 0.5474 0.7024 0.7811 0.7112 0.7843
10 0.7146 0.8801 0.5770 0.6200 0.7000 0.7738 0.7142 0.7879
20 0.7416  0.8734 0.5333 0.5719 0.7293 0.7726 0.7251 0.7789
35 0.7506 0.8764 0.5874 0.6222 0.7146 0.7841 0.7227 0.7837
100 0.7588 0.8779 0.5956 0.6230 0.7232 0.7744 0.7353 0.7867

for each class for Cora and Citeseer datasets repectively.
The neighbor class counts are represented by the last 7
features for the Cora dataset and the last 6 features for
the Citeseer dataset. As seen in the figures, the weights
corresponding to the neighbor class counts are much
larger than the rest of the features, hence these are more
important features for classification.

IV. CONCLUSIONS

In this paper we have shown a successful implemen-
tation of feature selection for a collective classification
algorithm, ICA. The results show that, feature selection
using the mRMR feature selection results in almost as
good features as the whole dataset in terms of their
accuracy. On the other hand, due to the reduced dimen-
sionality of inputs, training takes much less time.
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Fig. 1.

Fig. 2.

Weights at the end of logistic regression training of ICA for Cora dataset.
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Weights at the end of logistic regression training of ICA for Citeseer dataset.
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