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Abstract 
Normalized Compression Distance (NCD) is a compression 
based pairwise distance measure. NCD has been shown to 
perform well in different domains, such as music, biological 
sequence and text classification. In this study, we use NCD 
distance together with Smith-Waterman (SW) alignment scores 
of protein sequences for gene ontology prediction. We find out 
that, using secondary structure in addition to the amino acid 
sequence increases the prediction performance when using 
NCD or SW alignment scores alone. The best contribution 
ratio of secondary structure for SW alignment scores is 0.25, 
while it is 0.50 for NCD scores. We also investigate using both 
NCD and SW together with the amino acid and secondary 
structure. We find out that this combination results in better 
prediction than NCD alone, but worse prediction than SW 
alone.  
     
Keywords: Normalized Compression Distance, Smith-
Waterman alignment score, amino acid sequence, secondary 
structure, Gene Ontology.        

1. Introduction 
Protein function prediction is one of the most important 
and difficult problems in bioinformatics.  
Usually, alignment scores between amino acid or 
secondary structure sequences are used to predict 
protein function. One of the most frequently used 
alignment algorithms is the Smith-Waterman (SW) 
alignment which is a local alignment algorithm suitable 
for detecting remote protein similarities. The 
normalized compression distance (NCD) is another 
measure of distance that can be used between protein 
sequences as well as other kinds of data, such as music, 
text or images. SW alignment scores and NCD have 
already been used for function prediction and it has 
been shown that NCD performs worse than SW 
alignment, while combination of NCD and alignment 
scores outperforms alignment scores only [Kocsor et.al. 
2005].  
In this study, secondary structure is incorporated into 
SW alignment scores and NCD scores and it is shown 
that incorporating secondary structure improves 
function prediction. It is found out that, unlike [Kocsor 
et al., 2005] where combination of SW and NCD on 
amino acid sequences was found to help for 
classification, when using secondary structure in 
addition to amino acid sequence, using SW and NCD 

together does not give better results than SW 
incorporating secondary structure. 
The rest of the paper is organized as follows. Section 2 
summarizes the previous work on protein function 
prediction and NCD. Section 3 introduces SW and 
NCD and how they are used when both amino acid 
sequence and secondary structure are available. Section 
4 includes information about the dataset used in the 
experiments. Section 5 summarizes the experimental 
results. The paper ends with the conclusions in Section 
6.   

2. Previous Work  

Especially with the increasing amount of proteins whose 
sequences are known but functions not known, 
automated function prediction have gained more 
importance.  The Gene Ontology is one of the most 
frequently used definitions of protein function. In 
January 2008 GO contains over 24,500 annotations 
which include the GO ID, a unique alphanumerical 
string, the common name and the definition of the 
protein. GO provides three first level branches: 
biological process, cellular component and molecular 
function.  The Gene Ontology Annotation [Camon et 
al., 2004] database provides annotations for proteins of 
the UniProt Knowledgebase [Butler, 2002] using the 
Gene Ontology (GO). GOA includes many organisms 
such as human, mouse, rat, arabidopsis, zebra fish, 
chicken and cow. 

A protein can be represented in four different levels: the 
amino acid sequence, secondary structure, tertiary 
structure and quaternary structure. All of these 
representations are used for bioinformatics applications. 
The Protein Data Bank (PDB) [Berman et. al, 2000] is 
an online storage for the three-dimensional structures of 
proteins, nucleic acids and protein-nucleic acid 
complexes. The PDB contained 50,480 structures in 
April 2008. For each structure, sequence details, atomic 
coordinates, crystallization conditions, 3-D structure 
neighbors computed using various methods, derived 
geometric data, structure factors, 3-D images and a 
variety of links to other resources are available in PDB. 



Because they are less costly to evaluate and hence 
available more, the most frequently used protein 
representations are the amino acid sequence and then 
the secondary structure. Amino acid sequences have 
been used by numerous people for protein fold 
recognition, while secondary structure has been used in 
addition to the amino acid sequence, for example, by 
[Wallqvist et al. 2000], [Cheng and Baldi 2006].  

Alignment-based methods such as Smith-Waterman 
[Smith and Waterman, 1981] or Needleman-Wunsch 
[Needleman and Wunsch, 1970] are frequently used for 
bioinformatics applications. Since it can detect partial 
matchings between sequences, Smith Waterman 
alignments can detect remote protein similarities and 
hence is more useful for function prediction.  Previously 
[Liao and Noble, 2003] built pairs of sequences in the 
data set and obtained pairwise alignment scores by 
aligning these. They showed that using the pairwise 
alignment scores as features to input to support vector 
machine classifiers is a straight-forward method that 
outperforms many previous work, e.g. the SVM-Fisher 
method  [Jaakkola et al., 2000], the PSI-BLAST 
algorithm [Altschul et al., 1997], SAM [Krogh et al., 
1994] and FPS [Grundy, 1998], especially when 
working with large data sets.  

Both amino acid sequence and secondary structure were 
used simultaneously by [Wallqvist et. al., 2000] where 
they showed that secondary structure improves fold 
recognition. Similarly, based on Wallqvist’s amino acid 
and secondary structure combination idea, [Aygün et 
al., 2008a] showed that secondary structure can help 
with gene ontology prediction.  

 The normalized compression distance (NCD) is another 
measure of distance which is shown to perform quite 
well in different domains. [Keogh et al., 2004] present a 
successful application in pattern recognition, [Cilibrasi 
et al., 2004] and [Cataltepe et al., 2006] used NCD in 
music domain for composer and genre classification. 
Cilibrasi and Vitanyi [Cilibrasi and Vitanyi, 2005] 
provide examples of successful uses of NCD in many 
areas. Different distance metrics that use compression 
are compared in [Sculley and Brodley, 2006]. These 
metrics are called Chen-Li metric (CLM), the 
compression-based dissimilarity measure (CDM), 
compression-based cosine (CosS). Sculley and Brodley 
show that NCD outperforms all the other metrics. 
[Nevill-Manning and Witten, 1999] argued that proteins 
cannot be compressed which was answered by [Hategan 
and Tabus, 2004] stating that proteins can be 
compressed using appropriate compression algorithms.  
Use of LZ78 algorithm for compressing proteins was 
suggested by [Freschi and Bogliolo, 2005]. The success 
of NCD was shown in bioinformatics by [Li and 

Vitanyi, 1997] and [Li et al., 2001]. [Ferragina et al., 
2007] provides another use of NCD on biological data. 

The normalized compression distance was developed by 
[Cilibrasi and Vitanyi, 2005] based on Kolmogorov 
complexity which cannot be computed, but only 
approximated. It is a universal, parameter-free 
(dis)similarity metric which does not depend on the 
compressor type used. It computes the distance between 
two sequences, based on their lengths when they are 
compressed individually or together.  

Success of alignment score and compression based 
methods for protein sequence classification has been 
examined and compared with each other in [Kocsor et 
al., 2005]. They show that using alignment scores only 
outperforms using NCD only. However, they suggest a 
new similarity metric which is a combination of 
alignment scores and compression scores and report that 
this new combined metric has a better performance than 
alignment or compression only.  

3. Measuring Similarity or Distance Between 
Proteins 

3.1. Smith-Waterman alignment scores 

Smith-Waterman [Smith and Waterman, 1981] is a local 
and pairwise alignment algorithm. It finds similar 
regions in longer sequences which do not have to be 
totally similar and also which may have varying 
sequence length. Therefore, it is suitable for detecting 
the similarity of distantly related proteins. Pairwise 
alignment scores between a pair of proteins, in addition 
to other measures of similarity between them, have been 
used in [Cheng and Baldi, 2006]. 

Alignment scores to all available training sequences 
have also been used as inputs in [Liao and Noble, 2003] 
and also in this study. “SVM-pairwise” [Liao and 
Noble, 2003] takes all sequence pairs in the database 
and aligns them to each other using the Smith-
Waterman local alignment algorithm. This is based on 
the idea that two proteins belonging to the same class 
can be aligned similarly to a set of proteins containing 
both positive and negative instances. Alignment scores 
are then used as the constant-sized feature vector for a 
protein. For a training set of N sequences, every protein 
is aligned to all N sequences, including itself, and it has 
N features. These features are the input to the 
classification algorithm. Liao and Noble indicate that 
this method is not only easy to use, but also superior to 
similar algorithms due to its low complexity and more 
accurate because it learns from both positive and 
negative examples.  



Although it is usually used with amino acid sequences, 
Smith-Waterman algorithm can also align sequences 
according to their secondary structure.  Balign [Aygün 
and Çataltepe, 2008] produces Smith-Waterman or 
Needleman-Wunsch alignment scores calculated using 
both amino acid sequence and secondary structure. The 
tool allows including secondary structure according to a 
parameter α chosen by the user between 0 (use amino 
acid sequence only) and 1 (secondary structure only). 
The Smith-Waterman alignment score including both 
the amino acid and the secondary structure is computed 
according to [Wallqvist et.al., 2000]:   

)q ,SW(p   )q ,SW(p  q)(p,SW SSSSAAAA αα +=  (1) 

where p and q are the proteins to be aligned, pAA and qAA 
are the amino acid and the secondary structure 
sequences for the protein p respectively, SW(pAA,qAA) is 
the Smith-Waterman alignment score computed from 
the amino acid sequences and SW(pSS,qSS) is the Smith-
Waterman alignment score computed from their 
secondary structure. Gap open and extension penalties 
are also included in the alignment score. 

Balign produces two types of alignment scores, the 
percent identity and the bit score. The bit score is the 
sum of the substitution matrix entries for matches minus 
gap penalties, normalized with respect to the statistical 
parameters of the scoring system and is therefore 
comparable between different alignments. In this study 
we use conservation score which is the normalized 
version of bit score:   
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Conservation score gives a better measure of similarity 
due to normalization and is therefore preferred to raw 
Smith-Waterman alignment scores in this study. 

3.2. Normalized Compression Distance 

Normalized compression distance (NCD) is a 
parameter-free, universal metric for sequence similarity 
developed by [Cilibrasi and Vitanyi, 2005]. The 
normalized compression distance, NCD(x, y), between 
two sequences x and y, is the normalized version of the 
compression distance C(x, y) involving the normal 
compressor C and is defined as follows [Cilibrasi and 
Vitanyi, 2005]:  
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The NCD does not need any background knowledge 
about the data set and is also robust because it is defined 
independently from the compressor type. 

NCD can be computed for amino acid sequences or 
secondary structure sequences separately, using the 
corresponding strings for x and y.  Just as in the case of 
Smith-Waterman alignment scores, in this study, we aim 
to compute NCD between two proteins using both their 
amino acid and secondary structure sequences. We 
achieve this purpose using a linear combination of NCD 
scores for the amino acid (NCD(pAA,qAA)) and secondary 
structure (NCD(pSS,qSS)) sequences:  
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In this formula [ ]1:0∈β  is a parameter similar to α in 
Equation (1) and it controls the contribution of 
secondary structure to the NCD score.   

3.3. Combination of NCD and Smith Waterman scores 

In their study on comparison of alignment-based and 
compression-based classification of proteins, Kocsor et. 
al. report that alignment-based classification 
outperforms the compression-based classification 
[Kocsor et al. 2005]. On the other hand, combination of 
alignment and compression scores outperforms both. 
They suggest using the combination score F(x, y) for the 
sequences x and y as:  
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This is suggested for amino acid sequences only, and it 
needs to be extended to incorporate the secondary 
structure. In equation (1) SWα(p,q) and in equation (3) 
NCDβ(p,q) show how to incorporate the secondary 
structure into the alignment and compression scores. 
Combination of them similar to equation (4) leads to a 
new combined measure of similarity between two 
proteins that incorporate both amino acid sequence and 
secondary structure as well as Smith-Waterman and 
NCD scores:   

),(
),(
),(

1),( qpNCD
ppSW
qpSW

qpf β
α

α
αβ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=      (5) 

Upon examination of the NCD and SW scores, we 
found out that the agreement between SW and NCD 
scores depends on the sequence length. In order to find 
out this dependence, we could not use direct comparison 



of scores, since one shows similarity and the other 
distance and their distributions are quite different from 
each other.  Instead the following procedure is applied: 
First of all, all proteins are binned according to their 
sequence lengths. SW and NCD amino acid scores of 
proteins in the same bin are computed. In order to 
measure the disagreement between the scores, for each 
protein, the Smith-Waterman alignment scores to all 
other proteins are sorted from highest to lowest. The 
NCD scores of the same protein and all the other 
proteins are also sorted. The number of inversions 
[Kleinberg and Tardos, 2006] between these two protein 
sequences is taken to be a measure of disagreement 
between Smith-Waterman and NCD scores. In order to 
normalize for the effect of sequence length, the number 
of inversions is divided by the expected number of 
inversions n*(n-1)/4 where n is the number of proteins 
that are in the same length bin.   The average number of 
normalized inversions for all proteins in each bin is 
computed. The higher the number of inversions, the 
lower the agreement between NCD and Smith 
Waterman scores. It is found out that as the sequence 
length increases, both NCD and SW become more 
consistent and agree on distance/similarity of a protein 
to other proteins. On the other hand, for small sequence 
lengths, NCD and SW may not agree. The reason for 
this may be the fact that a compression algorithm is 
used for NCD and for small sequence lengths, since 
there is not enough data, compression can not be 
performed efficiently.  

In Eqn. 5, the Smith-Waterman and NCD scores are 
combined and the formulation does not include the 
length of the sequences.  We think that the contribution 
of compression scores to the overall similarity needs to 
include the sequence length. In order to accomplish this, 
fαβ (equation 5) is modified: 
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where φ is the normalization factor with:  
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(6) enables the NCD score to have more effect as 
sequence length increases.  Parameter δ is included so 
that constant additives can also be taken into account. 

4. Data Set  
We use a data set generated from Gene Ontology 
hierarchy. In the data set there are 27 GO terms. In GO 
hierarchy, a protein may be associated with more than 

one term if it is known that it has multiple functions, 
therefore in our dataset a protein may be associated with 
more than one function. If two proteins have a high 
global alignment score (above 40 percent similarity), 
then they have the same function with high probability 
and hence function prediction is a quite easy task. The 
function prediction becomes an interesting task when 
the test sequence does not show high similarity to the 
training data.  To remove sequence homologs, PDB's 
scheme of using BLASTClust algorithm for 40% 
sequence identity is applied. To obtain a well-balanced 
class distribution, classes with less than 100 or more 
than 550 sequences are eliminated which resulted in a 
dataset with 27 classes. Please see [Filiz  et. al. 2008, 
and Filiz 2008] for more details on the data set.   

Among the GO classes considered, Class 14 has to be 
considered as an outlier due to its average sequence 
length which is around 3.5 times shorter than the closest 
class and the ratio of its beta sheet regions which is 
around half of the closest class and which possibly 
affects the classification results. 

The amino acid sequences and secondary structures of 
every protein are downloaded via PDB web service. The 
dataset obtained from the GO database includes 
secondary structure in DSSP representation. The 
secondary structure sequences are converted to HEL (H: 
alpha helix, E: beta sheet, L: loop) representation 
according to: H:G,H,I ; E: B,E ; L: C,S,T. 
 

5. Experiment Details  

The Smith Waterman alignment scores used in the 
experiments are the conservation scores produced by 
Balign program as explained above. 

For the computation of NCD scores, the CompLearn 
Toolkit [Cilibrasi, 2003] developed by Cilibrasi, Cruz 
and De Rooij is used. Complearn is an open source 
toolkit built based on Vitanyi and Li’s work on 
compression-based learning algorithms. The 
compression algorithm used for NCD is the LZMA 
(Lempel-Ziv-Markov chain-Algorithm). LZMA is a 
variation of the LZ77 [Lempel and Ziv, 1997].  LZMA 
compresses very fast and its compression ratio is 30% 
more than that of gzip, another LZ77 variation, and 15% 
more than bzip2, also another LZ77 variation, therefore 
it is preferred in this study.  

For the classification of proteins according to the scores 
computed, the k-nearest neighbor (kNN) method is 
used. kNN is a supervised learning algorithm that 
classifies the test instance to the class to which the 
majority of the k nearest train instances belong 
[Alpaydin, 2004]. “Nearest” means having the smallest 



distance computed with a certain distance measure, e.g. 
Euclidean or cosine. The training instances can be both 
positive and negative, so the kNN algorithm enables 
learning from negative examples, too. kNN is a quite 
straight-forward algorithm with low complexity and 
surprisingly good performance [Kocsor et al., 2005]. In 
our experiments, we also tried SVMs, however we 
found out that they performed worse than kNN for this 
problem and are much slower. So, we prefer kNN in 
this study. We used k=1, which is also called 1NN.  

Since the data set is multi-labeled (i.e. one protein may 
belong to more than one GO classes), one-against-all 
classification is used. In this method, the data set is 
divided into two subsets, the first subset is the class to 
be predicted and the second subset is made up by all the 
other classes. The aim is to correctly isolate one class 
from the others. 

In order to get a good estimate of test performance, 10-
fold cross validation is used. The positive and negative 
number of examples in both training and validation sets 
are kept proportional.  

There are a number of criteria that could be used to 
measure performance of classification with each 
similarity metric. Since the data sets are unbalanced 
(there are many more negative instances and a much 
smaller number of positive instances), instead of 
accuracy, the AUC (Area under the ROC Curve) is used 
as a measure of success [Alpaydın, 2004]. The AUC 
value for a class is the mean of the AUC values 
obtained for validation data on each of its 10 folds. 

6. Results  

We first compare the performance of using SW or NCD 
scores by themselves on amino acid sequences only. 
The AUC scores for all 27 classes are shown in Figure 
1. These results are consistent with that of Kocsor, 
where they showed that SW (average AUC=0.90) 
always performed better than NCD (average 
AUC=0.66). 

Next, we determine the best amount of secondary 
structure contribution when using SWα or NCDβ scores. 
Although for each of the 27 GO classes, the best value 
of α or β differed, according to the mean of the AUC 
values over all 27 classes, α=0.25 (average AUC=0.92) 
and β=0.5  (average AUC=0.71) gave the best results 
when using SW and NCD respectively.  Therefore, 
incorporating secondary structure increases the 
performance when either SW or NCD are used.  

As the last set of experiments, we used formula (6) and 
hence all SW, NCD, amino acid sequence and 

secondary structure. As seen in figure 2, the AUC 
values are better than using NCD, however using SW 
results in the best performance. So, best prediction 
including δ is obtained by setting to 4. 
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       Figure 1: Comparison of AUC values for SWAA and NCDAA. 

        Figure 2: Comparison of AUC values for SWAA and NCDAA.  

7. Conclusions  
We extended formulation of Kocsor et.al. to use both 
SW and NCD scores for protein function prediction, to 
the case when amino acid sequence and secondary 
structure are available. We found out that the inclusion 
of secondary structure improves the classification 
performance for both NCD and SW by themselves. 
However, unlike Kocsor et.al., for our data set using 
NCD and SW together did not give better performance 
than using SW alone. SW was superior when we 
extended Kocsor et al.’s [2005] formulation to use NCD 
and SW together, to take into account the string lengths. 
We are in the process of finding more suitable 



feature/classifier combination algorithms for this 
problem. 

Acknowledgements 
Filiz was supported by the 2228 Tubitak scholarship 
program and Cataltepe is supported by Tubitak EEEAG 
research project 10E164. Authors would like to thank 
Assoc. Prof. Uluğ Bayazıt of Istanbul Technical 
University for useful discussions. 

References 
Alpaydın, E., 2004. Introduction to Machine Learning, The MIT 
Press, Massachusetts.  

Altschul, S.F. , Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., 
Miller, W. and Lipman, D. J., 1997. Gapped BLAST and PSI-BLAST: 
a new generation of protein database search programs, Nucleic Acids 
Research, 25, 3389-3402 

Aygün, E., Kömürlü, C., Aydın, Z. and Çataltepe, Z., 2008. Protein 
Function Prediction with Amino Acid Sequence and Secondary 
Structure Alignment Scores, HIBIT 2008, Istanbul, Turkey, May 18-
20. 

Aygün, E., and Çataltepe, Z., 2008. balign, in preparation.  

Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., 
Weissig, H., Shindyalov, I.N. and Bourne, P., 2000. The Protein 
Data Bank, Nucleic Acids Research, 28(1), 235-242. 

Camon, E., Magrane, M., Barrell, D., Lee, V., Dimmer, E., Maslen, 
J., Binns, E., Harte, N., Lopez, R. and Apweiler, R., 2004. The 
Gene Ontology Annotation (GOA) Database: sharing knowledge in 
Uniprot with Gene Ontology, Nucleic Acids Research, 32(1), D262-
D266. 

Cataltepe, Z., Yaslan, Y. and Sönmez, A., 2006. Music genre 
classification using midi and audio features, Journal of Applied Signal 
Processing, 2006. 

Cheng, J. and Baldi, P., 2006. A machine learning information 
retrieval approach to protein fold recognition, Bioinformatics, 22(12), 
1456–1463.  

Cilibrasi, R., 2003. The CompLearn Toolkit, (Online). Available:  
http://complearn. sourceforge.net/ 

Cilibrasi, R., Vitanyi, P.M.B. and Wolf, R., 2004. Algorithmic 
clustering of music based on string compression, Computer Music J., 
28(4), 49–67. 

Cilibrasi, R. and Vitanyi, P.M.B., 2005. Clustering by compression, 
IEEE Trans. Inform. Th., 51(4), 523–1545. 

Ferragina, P., Giancarlo, R., Greco, V., Manzini, G. and Valiente, 
G., 2007. Compression-based classification of biological sequences 
and structures via the Universal Similarity Metric: experimental 
assessment, BMC Bioinformatics, 8, 252. 

Filiz A., 2008. Using Compression Based Distances for Protein 
Function Prediction, M.Sc. Thesis, Istanbul Technical University 
Computer Engineering Dept., Turkey. 

Filiz, A., Aygün, E., Keskin, O., Çataltepe, Z., 2008. Importance of 
secondary structure elements for prediction of GO Annotations, 
HIBIT’08, Istanbul, Turkey. 

Freschi, V. and Bogliolo, A., 2005. Using sequence compression to 
speedup probabilistic profile matching, Bioinformatics, 21(10), 2225-
2229. 

Grundy, N., 1998. Family-based homology detection via pair-wise 
sequence comparison, Proc. 2nd Ann. Int. Conf. Computational 
Molecular Biology, 94–100.  

Hategan, A. and Tabus, I., 2004. Protein is compressible, 
Proceedings of the Northern Signal Processing Symposium. 

Jaakkola, T., Diekhans, M. and Haussler, D., 2000. A 
discriminative framework for detecting remote protein homologies, 
Journal of Computational Biology, 7(1–2), 95–114. 

Keogh, E., Lonardi, S. and Rtanamahatana, C.A., 2004. Toward 
parameter free data mining, In Proceedings of the 10th ACM SIGKDD 
Int. Conf. Knowledge Discovery and Data Mining, Seattle, WA, 206–
215, Aug 22-25. 

Kleinberg, J. and Tardos, E., 2006. Algorithm Design, Pearson 
Education, Inc..  

Kocsor, A., Kertesz-Farkas, A., Kajan, L. and Pongor, S., 2005. 
Application of compression-based distance measures to protein 
sequence classification: a methodological study, Bioinformatics, 22(4), 
407–412. 

Krasnogor, N. and Pelta, D.A., 2004. Measuring the similarity of 
protein structures by means of the universal similarity metric, 
Bioinformatics, 20(7), 1015-1021. 

Krogh, A., Brown, M., Mian, I., Sjolander, K. and Haussler, D., 
1994. Hidden Markov models in computational biology: Applications 
to protein modeling, Journal of Molecular Biology, 235, 1501–1531.  

Li, M. and Vitanyi, P.M.B., 1997. An Introduction to Kolmogorov 
complexity and its Applications. Springer Verlag, NY. 

Li, M., Badger, J.H., Chen, X., Kwong, S., Kearney, P. and Zhang, 
H. , 2001. An information-based sequence distance and its application 
to whole mitochondrial genome phylogeny, Bioinformatics, 17, 149–
154. 

Liao, L. and Noble, W.S., 2003. Combining pairwise sequence 
similarity and support vector machines for detecting remote protein 
evolutionary and structural relationships, Journal of Comp. Biology, 
10(6), 857-868.  

Nevill-Manning, C.G. and Witten, I.H., 1999. Protein is 
incompressible, DCC ’99 Data Compression Conference, 257. 

Needleman, S. and Wunsch, C., 1970. A general method applicable 
to the search for similarities in the amino acid sequence of two 
proteins, J Mol Biol., 48(3), 443-53.  

Sculley, D. and Brodley, C.E., 2006. Compression and Machine 
Learning: A New Perspective on Feature Space Vectors, Proceedings 
of the Data Compression Conference (DCC’06).  

Smith, T.F. and Waterman, M.S., 1981. Identification of Common 
Molecular Subsequences. Journal of Molecular Biology, 147, 195-
197. 

Wallqvist, A., Fukunishi, Y., Murphy, L.R., Fadel, A. and Levy R. 
M., 2000. Iterative sequence/secondary structure search for protein 
homologs: comparison with amino acid sequence alignments and 
application to fold recognition in genome databases, Bioinformatics, 
16(11), 988-1002. 

Ziv, J. and Lempel, A., 1977. A universal algorithm for data 
compression, IEEE Transactions on Information Theory, 23(3), 337-
343. 


