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ABSTRACT 

In this study, we use amino acid sequence and actual or 
predicted secondary structure for protein function predic-
tion. We investigate both sequence-sequence and Hidden 
Markov Model (HMM) profile-profile similarity measures 
that use both sequence and secondary structure informa-
tion. Our findings on a data set consisting of 5 Gene On-
tology (GO) Molecular functions and 785 sequences show 
that actual secondary structure can help for protein func-
tion prediction when it is used with sequence-sequence 
alignment scores. We did not find a consistent improve-
ment in function prediction when predicted or actual sec-
ondary structure is used with profile-profile alignment 
scores.   

1. INTRODUCTION 

Previous Work: Sequence-sequence amino acid alignment 
scores have already been used for protein function predic-
tion (see for example GOtcha [17] and GoFigure [13]). For 
fold recognition problem, profile-profile alignment scores 
have been shown to perform better than sequence-
sequence alignment scores [6]. Wallqvist et al. [21] used 
predicted and actual secondary structure in sequence 
alignment and showed that secondary structure informa-
tion contributes to the accuracy of fold recognition. Aydin 
et al. [3] reports similar results.  In [20], it has been shown 
that using predicted or actual secondary structure in pro-
file-profile hidden Markov model alignments has also po-
tential to improve fold recognition.  
Contributions of our method: We evaluate the effect of 
using actual or predicted secondary structure for alignment 
scores for Gene Ontology (GO) [5] function prediction. 
We perform our experiments on a data set of 785 protein 
sequences from 5 first level GO Molecular Function 
classes. We compute the sequence-sequence alignment 
scores as well as profile-profile HMM alignment scores 
with varying contributions of actual or predicted secondary 
structure. We determine the best secondary structure con-
tribution to the alignment scores based on our data set. We 
evaluate performance of different methods by means of 
AUC (area under the ROC curve) as in [9] .  
Results: Using the actual secondary structure in sequence-
sequence alignment helps significantly (95% confidence) 
for function prediction in 3 out of the 5 GO classes we 
considered. Using predicted secondary structure in se-

quence-sequence or profile-profile HMM alignment 
scores, or using actual secondary structure in profile-
profile HMM alignment scores, does not result in an im-
provement in function prediction.  

2. METHODS 

2.1 Data 
 

2.1.1   Labels from GOA 
To obtain a list of annotated proteins, we referred to Gene 
Ontology Annotation (GOA) project [5]. GOA provides 
GO assignments for the proteins of human, mouse, rat, 
arabidopsis, zebra fish, chicken and cow. It also provides a 
Protein Data Bank (PDB) [22] association file, which con-
tains only the assignments for the proteins present in the 
PDB database. To be able to fetch sequence and structure 
information from PDB, we used the PDB association file. 
 
2.1.2   Ontology Structure from GO 
We projected GO molecular function terms onto the first 
level of GO molecular function hierarchy over “is-a” rela-
tions. As “is-a” relations are allowed to be many-to-many 
in GO hierarchy, a term may lead to more than one first 
level term. Also, a protein may be associated with more 
than one term if it is known that it has multiple functions. 
We captured both cases during the labelling process and 
we generated five dimensional target vectors for five first 
level molecular function terms: GO:0005198 (structural 
molecule activity), GO:0005215 (transporter activity), 
GO:0030234 (enzyme regulator activity), GO:0030528 
(transcription regulator activity), GO:0060089 (molecular 
transducer activity) (Please see Table 1). 

2.1.3   Clusterings from PDB 
We applied PDB's scheme to remove sequence homologs. 
PDB provides several clusterings of proteins generated 
with CD-HIT or BLASTClust algorithms for different 
sequence identities. According to the scheme, only the best 
representative of each cluster is kept for a given clustering. 
Thereby, potential homologs are removed and non-
redundant datasets are obtained. In this work, we used 
clusterings generated by BLASTClust for 30% and 40% 
sequence identities, and we used clusterings generated 
with CD-HIT for 50% sequence identity. 
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Table 1. Go classes and the number of sequences used for 
the experiments from each class. 

GO term No of Proteins 

GO:0005198  
(structural molecule activity) 

171 

GO:0005215  
(transporter activity) 

214 

GO:0030234  
(enzyme regulator activity) 

127 

GO:0030528  
(transcription regulator activity) 

208 

GO:0060089  
(molecular transducer activity) 

119 

 
 
2.1.4   Amino Acid Sequences and Secondary Structures 
from PDB 
Last of all, we downloaded amino acid sequences and sec-
ondary structures of every protein via PDB web service. 
Eventually, we obtained three non-redundant datasets: 
NRB30, NRB40, and NRC50. We only report our results 
for NRB40 in this paper, however the results for NRB30 
and NRC50 were similar.  
The ratio of different secondary structure elements could 
affect function prediction success when secondary struc-
ture is predicted, because different types of secondary 
structure tend to be predicted with different accuracy [14]. 
In Figure 1, we show the ratios of secondary structure ele-
ments in our data set. Although the amount of beta sheets 
is less than the other types of secondary structure in gen-
eral, there is no significant difference between the 5 func-
tion classes we work with. 
 
2.2 Sequence Alignment 
 
2.2.1   Parameters 
In [21] secondary structure is used in the alignment score 
computation as follows:  
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where w  denotes the similarity score between two 

aligned sequences, 
aaM denotes the amino acid similarity 

matrix and 
ssM denotes the secondary structure similarity 

matrix, abm is the number of paired elements along the 

alignment, α  and β denoted the weighted importance of 

amino acid and secondary structures. Finally, oN denotes 

the number of gap openings and og denotes the gap open-

ing penalty, eN denotes the number of gap elongation and 

eg denotes the gap extension penalty. Since Wallqvist et 

al. respect the relation, βα −=1 , in their experiments, 
we also kept this relation. 
The following parameters were used for the alignment: 
Linear gap penalty; Gap extend: 8; AA scoring matrix: 
BLOSUM50; SS scoring matrix used in [21], show the full 
matrix; α (secondary structure contribution): 0.00, 0.25, 
0.50, 0.75, 1.00.  
 
2.2.2   Functional Identity Based on Sequence and Sec-
ondary Structure Alignment Scores 
As shown in Figure 2, we computed the probability that 
two sequences with similarity above a threshold fall in 
the same function class. For our dataset, we see that if the 
secondary structure global alignment score is above 20%, 
then we can classify two sequences in the same function 
category. On the other hand for 40% sequence similarity, 
the same result holds. We could not use the global align-
ment scores for function prediction, because all sequences 
in our data set had sequence identities below 40%. 
 
2.3 Hidden Markov Models 
Hidden Markov Models are finite state machine based 
models and they are used to represent sequential data 
which are extracted from a probabilistic system. Hence, 
HMM's can be used in biological sequence analysis with 
such a point of view: HMM's can be used to represent 
matchings, insertions, deletions and unmatchings of se-
quences which are concepts of homology. HMM's can be 
used for both pairwise similarity and profile-profile simi-
larity computation [7]. In profile-profile similarity compu-
tation, sequence profiles which measure how frequent cor-
responding residues are in a multiple sequence alignment, 
can be used. Since HMM's can model gaps and insertions, 
better than profiles, PFAM [18] database which includes 
HMMER profiles was established [8]. State-of-the-art 
tools for profile HMM extraction are HMMER [8], 
HMMSTR [4] and HHsearch [20]. Among these tools, 
HHsearch which is declared to be able to find distant ho-
mologies using profile-profile comparison, was preferred 
in this work. HHsearch has a good performance in homol-
ogy detection [6, 20] and it allows use of actual or pre-
dicted secondary structure in the alignment. 
 
2.3.1   HHsearch Method 
HHsearch detects homology using pairwise alignment of 
profile-HMM's. A profile-HMM is a template that repre-
sents how much conserved the residues in a sequence are. 
For some proteins of similar function, some residues are 
more likely to happen at certain regions and some other 
residues are more likely to be deleted at some other re-
gions. These patterns can be detected in a multiple se-
quence alignment which are used in profile-HMM's. A 
profile-HMM is built via modelling locations of some resi-
dues that are likely to be in, with M and I states, and mod-
elling gaps/deletions with state G. Consequently, the 
aligned version of a sequence from a multiple sequence 



alignment block can be produced by a path on profile-
HMM of that alignment. 
 
2.3.2   Similarity Measuring with HHsearch 
HHsearch searches homology between a given protein and 
a protein database [20]. As the output, it produces a score 
list measuring the homology of the given protein to the 
dataset proteins above a threshold. The main idea behind 
this method is to use this homology score list as a similar-
ity score list. Note that homology is a metric which meas-
ures, how many common residues do a couple of amino 
acid sequences have according to the evolution of the pro-
tein families. Since the functional sections are conserved 
during evolutionary process, the homology between two 
proteins points to the functional closeness of those pro-
teins. From a coarse point of view, it can be said that, the 
more two proteins are similar, the more they are function-
ally related [19]. 
 
2.3.1   HHsearch Similarity with Amino Acid Only 
HHsearch detects homology over a multiple sequence 
alignment. It uses PSI-BLAST [2] to obtain sequence 
alignments. We first produced a multiple sequence align-
ment database using PSI-BLAST. In this way, an align-
ment output per protein for whole data set was obtained. 
Next, an HMM per protein was produced. Then all these 
HMM's were collected and used to form the HMM data-
base. HHsearch detects homology through this HMM da-
tabase given an input protein's HMM. Hence for every 
protein, we obtained a score table. HHsearch, with default 
e-value, stores the scores of only 10 most similar proteins 
for the query protein. In this study, we use similarities be-
tween a protein and proteins in the training set as in SVM-
PAIRWISE [16]. Hence we needed similarities for each 
protein pair. So we moved e-value to higher levels so that 
every score can exceed this threshold. Finally, we came up 
with score values for each protein. We extracted similarity 
matrix that can be used in conventional classifiers such as 
KNN or SVM [1], as told in section 3.1. 
 
2.3.2   HHsearch Similarity with Amino Acid and Secon-
dary Structure 
HHsearch lets secondary structure information to be taken 
into account in homology detection. It uses secondary 
structure information for better HMM computation. Hence, 
HHsearch uses the secondary structure just after the align-
ment of each sequence and before the HMM extraction.  
HHsearch can be used directly with the PSIPRED tool 
[10]. By default, HHsearch uses predicted secondary 
structure. We implemented a converter tool which lets 
HHsearch use actual secondary structure, too. As a conse-
quence, we made experiments with both predicted and 
actual secondary structure and compared these two cases. 
In the alignment computation, HHsearch includes the sec-
ondary structure information according to: 

SSAA S+S=S αα )(       (2) 

where AAS  the amino acid alignment score for two 

HMMs for two certain states, SSS  is the secondary 

structure alignment score for those states, α  is the con-
tribution of the secondary structure in the joint similarity 
and )(αS  denotes the joint similarity. Soeding noted 

that 15.0=α  gave good results for fold recognition. As a 
part of this work, the role of α  was observed for 0, 0.25, 
0.5, 0.75, 1. [20] 
 

3. EXPERIMENTAL RESULTS 

3.1.   Classification 
After the similarity scores are computed according to 
formulas (1) or (2), by using sequence-sequence or HMM 
profile-profile comparison and for different values of 
alpha, we used these similarities to produce classifiers for 
protein function prediction. As in [16], we used pairwise 
alignment scores between a protein and all proteins in the 
training data as the input vector. 
The secondary structure which was in DSSP format was 
converted to HEL (H: α-helix, E: β-sheet,  L: loop (coil))  
format according to [11]. For sequence-sequence aligment, 
balign program, written by Eser Aygun of Istanbul Techni-
cal University, was used.    
Since the dataset is multi-labeled, i.e. a protein can have 
multiple functions, one-against-all classification scheme is 
used. The function prediction must be performed for each 
function class individually. As a consequence, first of all 
for each function a different classifier is produced, result-
ing in 5 classifiers. For each classifier to be trained, all 
available, and at each step the data is separated into 2 
parts, training set and test set. As the classifier, 1NN clas-
sifier is preferred since it has already produced good re-
sults [15] and since it runs much faster than other classi-
fiers such as SVMs. The algorithm is tested with 10-fold 
cross-validation. The distribution of the samples to the 
classes at each fold is kept same as it is in the original 
dataset. To evaluate the results, AUC (Area under the ROC 
curve) is used of ROC's plot for each class are computed. 
Figure 3 shows the average AUC values for each value of 
alpha and for each of the five functions for sequence-
sequence alignment scores.  
 
3.2   Smith-Waterman Alignment Scores 
Mean AUC values over 10 cross validation runs are com-
puted for each function and for each value of α  

( 1 0,75, 0.50, 0.25, 0.0, =α ). As clearly seen in Table 
2, contribution of secondary structure at level of 25% in-
creases classification accuracy for each class (Please see 
Figure 3 and Table 2).  We also performed a paired-t-test 
between the 10-fold-cross validation AUC values with 

0.0 =α  and 0.25 =α . We found out that at 89% sig-

nificance level 0.25 =α  gave larger AUC value for all 5 



GO function categories (Please see Table 4).  Predicted 
secondary structure does not cause an increase in accuracy 
except for “transcription regulator activity” (GO: 0030528) 
class (Please see Table 2). 
 In addition, it can be said that, AUC values obtained on 
the order of 90% points to the success of using sequence-
sequence alignment scoring matrix with NN algorithm for 
function prediction. 
 
3.3    HHsearch Scores 
Similar to  experiments with sequence-sequence align-
ment scores, for using profile-profile alignment scores 
also the mean AUC values over 10 cross validation runs 
are computed for each function and for each value of α  

( 1 0,75, 0.50, 0.25, 0.0, =α ). (Please see Table 3). 
 As seen in Table 3, using secondary structure (actual or 
predicted) did not result in a consistent improvement for 
function prediction. We also observed that profile-profile 
alignment scores performed worse than sequence-
sequence alignment scores. This contradicts the results 
obtained for fold recognition by [21]. Through the use 
open source HMM software and bigger datasets, we are 
planning to work more on this issue in the near future. 
 

4. CONCLUSIONS AND FUTURE WORK  

In this work, we examined if secondary structure informa-
tion can be used to help function prediction. We used 
Smith-Waterman sequence-sequence alignment scores and 
HHSearch profile-profile alignment scores together with 
nearest neighbour classifier. We found out that Smith-
Waterman scores and actual secondary structure could 
improve function prediction, whereas predicted secondary 
structure does not. We also found out that HHSearch and 
secondary structure, whether actual or predicted, does not 
help with function prediction. 
As future work, we are planning to work with other open 
source HMM tools such as HMMER [8] and SAM [12]. 
The dataset used in this study consisted of only 5 GO 
classes, we are planning to experiment on more GO 
classes. 
We are also planning to work with other classifiers, includ-
ing SVMs. 
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Figure 1. The ratios of each of the secondary structure elements in the protein sequences in the data set.  

 

 

 

Figure 2. The probability that two sequences with  amino acid sequence (alpha=0), secondary structure sequence (alpha=1) 
identity above a threshold belong to the same GO function category. 

 

 



 

 

 

Table 2: Using Smith-Waterman and different contributions of secondary structure, the AUC values for each of the GO cate-
gories. 

  α=0.00 α=0.25 α=0.50 α=0.75 α=1.00 
GO:0005198 89.0% 90.8% 90.7% 84.2% 75.8% 
GO:0005215 90.2% 92.0% 90.7% 87.7% 82.1% 
GO:0030234 89.9% 91.4% 90.9% 86.3% 80.2% 
GO:0030528 89.5% 91.6% 91.4% 86.8% 80.4% A
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GO:0060089 90.5% 91.4% 91.0% 88.2% 84.0% 
       

GO:0005198 89.0% 87.2% 86.0% 76.3% 71.3% 
GO:0005215 90.2% 88.6% 87.5% 84.7% 78.9% 
GO:0030234 89.9% 88.3% 87.0% 82.6% 81.1% 
GO:0030528 89.5% 90.0% 86.8% 82.5% 79.6% 
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GO:0060089 90.5% 89.5% 87.5% 85.7% 82.2% 
 
 

 

 

Figure 3. ROC curves for actual secondary structure and Smith-Waterman alignment scores. 



Table 3: Using HHSearch and different contributions of secondary structure, the AUC values for each of the GO categories.  

  α=0.00 α=0.25 α=0.50 α=0.75 α =1.00 
Class 1 80.0% 75.0% 70.0% 76.0% 80.0% 
Class 2 84.0% 83.0% 79.0% 77.0% 80.0% 
Class 3 84.0% 84.0% 83.0% 87.0% 83.0% 
Class 4 85.0% 83.0% 80.0% 81.0% 84.0% A
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Class 5 83.0% 82.0% 82.0% 81.0% 82.0% 
       

Class 1 76.0% 78.0% 78.0% 74.0% 71.3% 
Class 2 81.0% 82.0% 81.0% 82.0% 78.9% 
Class 3 82.0% 83.0% 83.0% 83.0% 81.1% 
Class 4 83.0% 82.0% 82.0% 82.0% 79.6% 
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Class 5 84.0% 82.0% 82.0% 83.0% 82.2% 

 
 
 
 
 

Table 4: t-test results for the hypothesis that AUC values of α=0.25 are better than α=0.00.  

 p-value Conf. Intv. 
Class 1 3% -0,0031 
Class 2 1% -0,0059 
Class 3 11% 0,0058 
Class 4 0% -0,0102 
Class 5 7% 0,001 
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