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ABSTRACT 

Predicted or actual protein secondary structure, in addition 
to amino acid sequence, is often used for fold recognition 
and function prediction. Different kinds of secondary struc-
ture elements could be predicted with different accuracy by 
different prediction methods and this could affect the fold or 
function prediction performance. In this study, contribution 
of amino acid sequence residues belonging to different types 
of secondary structure elements (H: alpha helix, E: beta 
sheet, L: loop) for protein function prediction is investi-
gated. Smith-Waterman alignment similarity scores between 
amino acid sequences belonging to 6 different sets of secon-
dary structure elements, namely, HEL, HE, HL, H, E and L, 
are computed. Using these alignment scores, protein func-
tion prediction is performed. On a function prediction data 
set, consisting of 27 Gene Ontology (GO) classes and 4498 
sequences, it is found out that using the whole amino acid 
sequence results in the best performance. Using H and L 
regions together results almost as well performance as HEL. 
E regions alone are the least significant in function predic-
tion. 

1. INTRODUCTION 

Predicted secondary structure has been found to be useful 
for prediction of some protein functions (for example [13]) 
and fold recognition (for example [21]). Although actual 
secondary structure helps more than predicted secondary 
structure does, experimental determination of the secondary 
structure is a costly process. A lot of different secondary 
structure prediction methods have been used (see [20] for a 
review) in the literature.  
In this study, importance of different secondary structure 
elements for protein function prediction is evaluated. In or-
der to do that, first amino acid sequences are partitioned 
according to the actual secondary structure information. 
Instead of the whole sequence, portions of the amino acid 
sequence that belong to different secondary structure regions 
are used.  
The rest of the paper is organized as follows: Section 2 ex-
plains the dataset used in this study. Section 3 includes the 
alignment, classification and evaluation techniques used.  
Section 4 contains the experimental results. The conclusions 
drawn from the experiments are in Section 5.  

2. DATA SET 

To obtain a list of annotated proteins, the Gene Ontology 
Annotation (GOA) project is used [8]. GOA provides GO 
assignments for the proteins of human, mouse, rat, arabidop-
sis, zebra fish, chicken and cow. It also provides a Protein 
Data Bank (PDB) [22] association file, which contains only 
the assignments for the proteins present in the PDB database. 
To be able to fetch sequence and structure information from 
PDB, we used the PDB association file. 
The ontology structure is obtained from Gene Ontology 
(GO) [5 and 7] database. The three top level GO classes, 
molecular function, cellular component and biological proc-
ess, are included in the data set used in this study.  In GO 
hierarchy, a protein may be associated with more than one 
term if it is known that it has multiple functions. All terms 
are captured during the labelling process and we generated 
multi-labelled data with 27 dimensional target vectors for all 
sequences in the data set. To remove sequence homologs, 
PDB's scheme is applied. PDB provides several clusterings 
of proteins generated with CD-HIT or BLASTClust algo-
rithms for different sequence identities. According to the 
scheme, only the best representative of each cluster is kept 
for a given clustering. Thereby, potential homologs are re-
moved and non-redundant datasets are obtained. In this 
study, clusterings generated by BLASTClust for 40% se-
quence identities are used since amino acid sequences with 
more than 40% homology tend to have same or very similar 
functions. To obtain a well-balanced class distribution, 
classes with less than 100 or more than 550 sequences are 
eliminated which resulted in a dataset with 27 classes. Table 
1 shows the 27 GO classes used.  

The amino acid sequences and secondary structures of every 
protein are downloaded via PDB web service.  

Contribution of H, E and L (H: alpha helix, E: beta sheet, L: 
loop) regions to function could rely on their portion in the 
sequences, so the average ratio of H, E and L regions’ length 
to the whole protein sequence length is calculated for each 
function class. Table 1 and Figure 1 show the H, E and L 
portions in the sequences.  



Due to lack of data, function prediction gets harder at  
deeper levels of GO tree. In Figure 2 (biological process) 
and Figure 3 (molecular function and cellular component) 
the locations of the GO functions used in this study are 
shown in the GO hierarchy.  
The dataset obtained from the GO database includes secon-
dary structure in DSSP representation.  The secondary struc-
ture sequences are converted to HEL representation accord-
ing to [14] (Table 2). 
 

DSSP  HEL 
G, H, I H 
B,E E 
C, S, T L 

Table 2: Conversion from DSSP to HEL 
 

3. EXPERIMENTAL METHODOLOGY 

In order to find out the importance of each secondary struc-
ture element (H, E, L) for each function, portions of amino 
acid sequence that has corresponding secondary structure of 
H or E or L are isolated. Then the amino acid sequences that 
belong to 6 different secondary structure elements, namely 
HEL, HE, HL, H, E and L are produced. Figure 4 shows the 
original amino acid sequence, secondary structure and each 
of the six amino acid sequences produced for HEL, HE, HL, 
H, E and L regions. When a secondary structure element is 
not used, in the amino acid sequence the actual residue is 
replaced by the “+” symbol. BLOSUM50 substitution matrix 
is modified to incorporate the “+” symbol. 
Pairwise alignment scores between two proteins could be 
used as input to the pattern recognition algorithm to be used 
for function prediction and whether the two proteins are in 
the same class or not are the outputs, as in [9]. Another ap-
proach is to use the alignment scores to all available training 
sequences as input. This is the approach taken in [17] and 
also in this study. “SVM-pairwise” [17] takes all sequence 
pairs in the database and aligns them to each other using the 
Smith-Waterman local alignment algorithm. This is based on 
the idea that two proteins belonging to the same class can be 
aligned similarly to a set of proteins containing both positive 
and negative instances. Alignment scores are then used as the 
constant-sized feature vector for a protein. For a training set 
of N sequences, every protein is aligned to all N sequences, 
including itself, and it has N features. These features are the 
input to the classification algorithm. Liao and Noble used 
this method with SVMs and they indicate that this method is 
not only easy to use, but also superior to similar algorithms 
(SVM-Fisher [11 and 12], PSI-BLAST [2], SAM [16] and 
FPS [10]) due to its low complexity and outputs with higher 
accuracy because of learning from negative examples. Liao 
and Noble [17] found that SVM-pairwise performs especially 
well when working with large numbers of protein sequences.  
The local alignment algorithm Smith-Waterman is used for 
computing the pairwise alignment scores. The balign tool [6] 
developed by Eser Aygün for Bioinformatics Project at ITU 
is used for computing the alignment scores. balign produces 
two types of alignment scores, the percent identity and the bit 

score, which is the sum of the substitution matrix entries for 
matches minus gap penalties, normalized with respect to the 
statistical parameters of the scoring system and is therefore 
comparable between different alignments [18]. In this study, 
the conservation score is used which is calculated by normal-
izing the bit score as follows:  

( )),(),,(max
),(),(

yybitscorexxbitscore
yxbitscoreyxcons =                         (1) 

where cons(x,y) is the conservation score of sequences x and 
y and bitscore(x,y) is the bitscore of sequences x and y.
Two different classification algorithms which are variants of 
nearest neighbor (NN) classification algorithm [1] is used. 
1NN classification is preferred due to its effectiveness and 
low time-complexity [15].   The first algorithm is 1NN. 1NN 
is a special case of kNN where k=1. According to a certain 
distance measure, the distance between a test instance and 
each train instance (including both positive and negative in-
stances) is computed and the test instance is classified to be 
in the class of the closest train instance. In this study, the 
Euclidean distance measure is used. The second classifica-
tion algorithm is called thresholded nearest neighbor (tNN), 
which works similar to 1NN. Considering that the negative 
examples are not proven negatives in all cases (it is possible 
that these do show a specific function, but it is experimen-
tally not shown yet), this algorithm deals with positive ex-
amples only. Let si be the ith sequence in the database and Cj 

be the jth class. Dij is defined as the maximum pairwise 
Smith-Waterman score of si and all the sequences in class Cj. 
If Dij ≥ threshold, then si is predicted to be in class Cj. Sup-
port Vector Machine (SVM) classifier is not used, because its 
performance on a smaller data set was found to be very close 
to that of 1NN and running SVM on our data set takes a lot 
of time. 
Because of the multi-labeled character of the dataset, one-
against-all classification is used. Each class is to be predicted 
independently from other classes, so for each of the 27 
classes, data is partitioned into two classes with sequences in 
class Ci and sequences not in Ci.   
Evaluation of each method is done via ten-fold cross valida-
tion where each partition inherits the class distribution in the 
original (not partitioned) data set. For evaluating the results, 
the ROC curves [1] for each class are drawn and area under 
ROC curve (AUC) is calculated for all ten folds. For testing 
the tNN, the threshold is initially set to the minimum Dij in 
the test set and moved to the maximum in equally-sized 
steps. Since AUC is used to determine the classification per-
formance, no certain threshold is needed for tNN. However, 
if accuracy would be used for performance, a certain thresh-
old is necessary. The best accuracies obtained by computing 
the break-even point, which is point where recall and preci-
sion values are equal to each other [19], are shown in Table 
3.  

4. RESULTS 

Function prediction results for 1NN and tNN classifiers are 
shown in Table 3. 
For 1NN classification, the HEL dataset has the best per-
formance (mean AUC: 0.90) for all molecular functions ex-



cept for class 14 (hormone activity) where all classifiers have 
very close and high performances. The mean AUC of HL is 
0.86 which is very close to HEL and it is followed by H 
(mean AUC: 0.79) and L (mean AUC: 0.77). E (mean AUC: 
0.74) and HE (mean AUC: 0.64) performed generally worse 
than other secondary structure regions. The higher perform-
ance of H and L regions is to be expected since their ratio in 
the data set is higher than E regions (see Figure 1). The fact 
that HL performs better than both H and L alone, shows that 
adding L regions to H regions results in a better prediction. 
But the facts that the AUC values of E and HE are very close 
to each other and that both are lower than H alone indicate 
that using E regions introduce noise and reduces classifica-
tion performance. This also explains the peak at class 14 
since the portions of E regions in this class is only 4,75%, ca. 
one third of the closest E regions’ portion of other classes, 
which makes the sequences in this class far less vulnerable to 
the noise introduced by E regions. 
tNN has the best performance for HEL classification with 
mean AUC 0.81, followed by HL classification (mean AUC: 
0.77) as by 1NN. Class 14 is again an outstanding point with 
best performance for each classifier. Different from 1NN, the 
AUC values for H, E and L are very close to each other, 
mean AUCs 0.66, 0.67 and 0.67 respectively; but HE per-
formed better than these three classifiers with mean AUC 
0.73. Another distinguishing point is the very low AUC val-
ues for class 27 (catalytic activity) for all classifiers which is 
not the case by 1NN except for HE classification. The noise 
effect of E regions stated by 1NN classification is not seen by 
tNN. The performance of HL classification being better than 
HE classification is explained by the L portion in the data set 
which is greater than the E portion. Generally, the AUC val-
ues obtained for tNN classification is lower than for 1NN. 
Since tNN does not use the negative examples, its lower pre-
diction performance is not surprising as learning from nega-
tive examples enhances the prediction performance [17]. 

5. CONCLUSIONS  

In this study, it is found out that using the whole amino acid 
sequences, as opposed to portions belonging to different sec-
ondary structure elements, results in the best function predic-
tion performance. Using HL regions together results in al-
most as good performance as the whole sequence. On the 
other hand, E regions are the least significant in function 
prediction. When learning only from positive examples 
(tNN), HE follows the performance of HL and the distribu-
tion of H, E and L does not play a significant role. However, 
using kNN algorithm which takes into account both positive 
and negative examples produces better prediction results. 
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Figure 1: Frequencies of H, E and L regions in the dataset 

 
 

Original sequence QYKEVNETKWKMMDPILTTSVPVYSLKVDKEYEVRVRSKQRNSGN 

Secondary structure HHHHHEEEEELLEHLLEEEEEELLLLLLLLLLLLLLLHHHEEEEL 

HEL QYKEVNETKWKMMDPILTTSVPVYSLKVDKEYEVRVRSKQRNSGN 

HE QYKEVNETKW++MD++LTTSVP+++++++++++++++SKQRNSG+ 

HL QYKEV+++++KM+DPI++++++VYSLKVDKEYEVRVRSKQ++++N 

H  QYKEV++++++++D+++++++++++++++++++++++SKQ+++++ 

E +++++NETKW++M+++LTTSVP++++++++++++++++++RNSG+ 

L  ++++++++++KM++PI++++++VYSLKVDKEYEVRVR+++++++N 

Figure 4: Secondary structure filtering 



 
Class  

No GO ID Class name Size H % E % L % 

1 0009405 pathogenesis 103 21.78 ± 0.2 24.88 ± 0.14 53.34 ± 0.19 

2 0009055 electron carrier activity 105 33.44 ± 0.18 16.66 ± 0.12 49.89 ± 0.13 

3 0006810 transport 107 32.27 ± 0.17 25.75 ± 0.18 41.98 ± 0.14 

4 0016787 hydrolase activity 117 32.06 ± 0.11 23.87 ± 0.08 44.07 ± 0.06 

5 0005506 iron ion binding 118 45.06 ± 0.21 12.18 ± 0.13 42.76 ± 0.13 

6 0000166 nucleotide binding 132 36.69 ± 0.13 18.59 ± 0.08 44.72 ± 0.11 

7 0003676 nucleic acid binding 137 29.64 ± 0.13 19.76 ± 0.11 50.60 ± 0.14 

8 0003700 transcription factor activity 137 49.32 ± 0.22 9.68 ± 0.11 41.00 ± 0.16 

9 0006508 proteolysis 148 27.34 ± 0.16 24.11 ± 0.13 48.55 ± 0.14 

10 0006412 translation 150 29.15 ± 0.19 16.61 ± 0.11 54.25 ± 0.22 

11 0003723 RNA binding 155 34.62 ± 0.18 19.16 ± 0.12 46.21 ± 0.14 

12 0008270 zinc ion binding 170 29.50 ± 0.17 14.73 ± 0.10 55.78 ± 0.18 

13 0005975 carbohydrate metabolic process 173 30.46 ± 0.15 23.88 ± 0.12 45.77 ± 0.08 

14 0005179 hormone activity 177 49.25 ± 0.15 4.75 ± 0.06 46.00 ± 0.15 

15 0016020 membrane 202 34.10 ± 0.28 20.92 ± 0.20 44.98 ± 0.17 

16 0005515 protein binding 210 32.87 ± 0.24 16.64 ± 0.14 50.49 ± 0.18 

17 0005634 nucleus 214 39.18 ± 0.22 12.79 ± 0.13 48.02 ± 0.16 

18 0006355 regulation of transcription, DNA-
dependent 

221 45.14 ± 0.22 12.53 ± 0.13 42.33 ± 0.16 

19 0005737 cytoplasm 232 38.41 ± 0.13 19.85 ± 0.10 41.74 ± 0.07 

20 0005622 intracellular 278 34.59 ± 0.20 14.37 ± 0.11 51.05 ± 0.20 

21 0005524 ATP binding 288 37.72 ± 0.13 19.50 ± 0.09 42.78 ± 0.09 

22 0006118 electron transport 297 37.24 ± 0.18 17.30 ± 0.12 45.46 ± 0.12 

23 0016491 oxidoreductase activity 300 38.30 ± 0.15 19.63 ± 0.10 42.07 ± 0.09 

24 0003677 DNA binding 329 40.92 ± 0.19 14.30 ± 0.13 44.78 ± 0.14 

25 0005576 extracellular region 354 37.74 ± 0.23 12.57 ± 0.14 49.69 ± 0.17 

26 0008152 metabolic process 361 39.96 ± 0.09 18.73 ± 0.07 41.31 ± 0.06 

27 0003824 catalytic activity 522 36.10 ± 0.13 19.67 ± 0.10 44.23 ± 0.10 

Total   4498    

Table 1: Gene Ontology class distributions in the data set used and the H, E and L ratios. 
 

Class 
No GO ID HEL HE HL H E L Class

No GO ID HEL HE HL H E L 

1 9405 0.96 0.98 0.97 0.95 0.95 0.96 15 16020 0.95 0.94 0.95 0.94 0.92 0.93 
2 9055 0.98 0.97 0.98 0.92 0.96 0.97 16 5515 0.95 0.94 0.95 0.92 0.94 0.93 
3 6810 0.98 0.97 0.97 0.95 0.94 0.96 17 5634 0.95 0.95 0.95 0.93 0.93 0.92 
4 16787 0.98 0.97 0.97 0.96 0.96 0.96 18 6355 0.95 0.94 0.95 0.93 0.92 0.94 
5 5506 0.98 0.97 0.98 0.96 0.95 0.96 19 5737 0.94 0.92 0.93 0.92 0.92 0.91 
6 166 0.97 0.96 0.97 0.96 0.93 0.95 20 5622 0.94 0.91 0.92 0.91 0.90 0.93 
7 3676 0.97 0.95 0.96 0.95 0.93 0.96 21 5524 0.94 0.91 0.93 0.91 0.88 0.91 
8 3700 0.97 0.96 0.97 0.96 0.94 0.96 22 6118 0.94 0.91 0.93 0.91 0.90 0.91 
9 6508 0.95 0.95 0.95 0.90 0.95 0.93 23 16491 0.95 0.94 0.95 0.91 0.91 0.92 
10 6412 0.96 0.94 0.96 0.93 0.92 0.95 24 3677 0.92 0.92 0.92 0.91 0.89 0.91 
11 3723 0.97 0.96 0.96 0.95 0.95 0.95 25 5576 0.95 0.93 0.95 0.93 0.92 0.93 
12 8270 0.97 0.96 0.96 0.94 0.95 0.95 26 8152 0.93 0.92 0.92 0.90 0.90 0.90 
13 5975 0.96 0.95 0.96 0.94 0.95 0.94 27 3824 0.88 0.85 0.87 0.84 0.86 0.86 
14 5179 0.99 0.99 0.99 0.99 0.98 0.99         

Table 3: Accuracy values for tNN using the thresholds at the break-even point 
 
 
 



 
  1NN tNN 

Class  
No GO ID HEL HE HL H E L HEL HE HL H E L 

1 9405 0.86 0.68 0.83 0.62 0.78 0.72 0.82 0.76 0.79 0.74 0.65 0.72 
2 9055 0.89 0.73 0.88 0.75 0.67 0.78 0.84 0.78 0.81 0.68 0.72 0.72 
3 6810 0.90 0.64 0.86 0.74 0.78 0.76 0.78 0.68 0.73 0.66 0.61 0.62 
4 16787 0.94 0.69 0.90 0.84 0.87 0.82 0.84 0.74 0.78 0.61 0.70 0.72 
5 5506 0.93 0.66 0.89 0.86 0.64 0.75 0.85 0.81 0.82 0.72 0.74 0.70 
6 166 0.92 0.52 0.89 0.83 0.79 0.77 0.79 0.70 0.74 0.61 0.64 0.58 
7 3676 0.86 0.61 0.83 0.72 0.73 0.72 0.77 0.68 0.73 0.65 0.60 0.62 
8 3700 0.88 0.70 0.85 0.81 0.52 0.65 0.88 0.81 0.86 0.75 0.72 0.75 
9 6508 0.93 0.68 0.90 0.81 0.82 0.82 0.74 0.61 0.68 0.58 0.54 0.54 

10 6412 0.88 0.58 0.83 0.74 0.67 0.75 0.84 0.72 0.78 0.65 0.67 0.65 
11 3723 0.85 0.62 0.82 0.74 0.67 0.67 0.82 0.76 0.78 0.69 0.68 0.68 
12 8270 0.91 0.65 0.89 0.73 0.67 0.82 0.81 0.74 0.79 0.67 0.69 0.72 
13 5975 0.94 0.69 0.92 0.81 0.89 0.82 0.75 0.60 0.66 0.53 0.56 0.52 
14 5179 1.00 0.97 0.99 0.97 0.95 0.99 1.00 0.99 0.99 0.99 0.97 0.99 
15 16020 0.85 0.66 0.81 0.66 0.69 0.72 0.74 0.69 0.70 0.70 0.62 0.60 
16 5515 0.87 0.55 0.86 0.71 0.67 0.73 0.80 0.72 0.78 0.68 0.67 0.67 
17 5634 0.84 0.58 0.81 0.75 0.61 0.64 0.79 0.76 0.77 0.71 0.69 0.69 
18 6355 0.88 0.66 0.85 0.77 0.59 0.67 0.87 0.81 0.84 0.74 0.72 0.75 
19 5737 0.85 0.48 0.84 0.83 0.80 0.77 0.67 0.56 0.63 0.48 0.54 0.54 
20 5622 0.87 0.59 0.84 0.76 0.64 0.70 0.83 0.77 0.79 0.68 0.71 0.66 
21 5524 0.91 0.52 0.89 0.85 0.83 0.81 0.77 0.64 0.72 0.54 0.56 0.57 
22 6118 0.93 0.66 0.90 0.80 0.71 0.83 0.81 0.71 0.75 0.60 0.63 0.63 
23 16491 0.96 0.75 0.94 0.90 0.84 0.86 0.88 0.78 0.82 0.61 0.66 0.68 
24 3677 0.88 0.56 0.83 0.76 0.63 0.72 0.77 0.69 0.73 0.62 0.64 0.64 
25 5576 0.93 0.82 0.93 0.79 0.84 0.88 0.93 0.90 0.92 0.88 0.85 0.88 
26 8152 0.95 0.58 0.93 0.92 0.89 0.85 0.84 0.73 0.79 0.61 0.72 0.69 
27 3824 0.94 0.45 0.92 0.88 0.87 0.85 0.74 0.60 0.68 0.48 0.51 0.55 

mean  0.90 0.64 0.86 0.79 0.74 0.77 0.81 0.73 0.77 0.66 0.67 0.67 
Table 4: mean AUC values of 1NN and tNN classifier for HEL, HE, HL, H, E and L classifications 

 
 



 
Figure 2: GO tree for biological process. Bold circles indicate the classes included in the dataset. 



 
Figure 3: Go tree for cellular component and molecular function classes. Bold circles indicate the classes included in the data-

set. 
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