A PCA/ICA BASED FEATURE SELECTION METHOD AND ITS APPLICATION FOR
CORN FUNGI DETECTION

Zehra Cataltepe*®, Hakki Murat Genc**, Thomas Pearson™**

* Istanbul Technical University, Computer Engineering Department, Istanbul, Turkey
cataltepe @itu.edu.tr

** Information Technologies Institute, Marmara Research Center,
The Scientific and Technological Research Council of Turkey, Kocaeli, Turkey
murat.genc @bte.mam.gov.tr

*** Engineering Research Unit, USDA-ARS, Manhattan, KS, USA
thomas.pearson @ gmprc.ksu.edu

ABSTRACT

Dimensionality reduction algorithms help reduce the classi-
fication time and sometimes the classification error. For time
critical applications, in order to have reduction in the feature
acquisition phase, feature selection is preferable to dimen-
sionality reduction, which requires measurement of all in-
puts. Traditional feature selection methods, such as forward
or backward selection, are costly to implement. We introduce
a new feature selection method that decides on features to
retain, based on how PCA (Principal Component Analysis)
or ICA (Independent Component Analysis) values them. We
compare the accuracy of our method to PCA and ICA using
the same number of principal/independent components. We
also do comparison to backward and forward selection with
the same number of features. For our experiments, we use
spectral measurement data taken from corn kernels infested
and undamaged by fungi. Our algorithm selects features with
almost as good classification accuracy as forward/backward
selection and is a lot faster than those algorithms. It also
results in better classification accuracy then using the same
number of principal/independent components.

1. INTRODUCTION

Feature selection methods (for example, [10, 2, 4} [11}5]) are
often used in pattern recognition applications. These meth-
ods choose a number of features among the original features.
An obvious advantage of using feature selection is reduction
in the time and cost of feature acquisition, as well as reduc-
tion in classifier training and testing time. Feature selection
is also helpful in improving classifier accuracy, provided that
noisy, irrelevant or redundant features are eliminated.

Forward and backward feature selection algorithms are
useful in identifying a good set of features. However, they
require training and testing a classifier at each feature addi-
tion/elimination step, hence are very costly in terms of time.
PCA (Principal Component Analysis) and ICA (Independent
Component Analysis) [6] have widely been used for dimen-
sionality reduction. While PCA works best when the in-
put distribution is gaussian, [CA works best for nongaussian
data.

In this study, we introduce a feature selection method that
relies on how PCA and ICA (FastICA implementation [6])
values a feature to eliminate a feature. The method starts with
all features and reduces them one by one, and hence is sim-

ilar to backward selection. It is much faster than backward
selection since the feature evaluation is made based on PCA,
which is usually much faster than training a classifier. Previ-
ously [11] has used entropy based symmetric uncertainty to
measure the relevance and redundancy of each feature. Al-
though [11] introduces a quite fast algorithm, it eliminates
each feature it deems irrelevant and may miss features that
could have been useful when used together. The symmet-
ric uncertainty is also used in [3], to measure the degree of
association between features.

The rest of the paper is organized as follows: In Section
[2)we introduce the corn spectra data that we use in our exper-
iments. In Section [3| we summarize the feature selection and
dimensionality reduction algorithms we considered. In Sec-
tion[d] we introduce our feature selection algorithm based on
PCA/ICA. Section [3] includes information on the accuracy
and timing results we obtained for each method. Section [6]
concludes the paper.

2. CORN DATA

We used data from the agricultural domain, corn kernels in-
fected and un-infected with certain fungi [7], to perform ex-
periments on our algorithm. In [7]], in addition to single-
kernel reflectance spectra (550 to 1700 nm), visible color re-
flectance images, x-ray images, multi-spectral transmittance
images (visible and NIR), and physical properties (mass,
length, width, thickness, and cross-sectional area) were also
used to determine if they could be used to detect fungal-
infected corn kernels. Kernels were collected from corn ears
inoculated with one of several different common fungi (As-
pergillus flavus, Aspergillus niger, Diplodia maydis, Fusar-
ium graminearum, Fusarium verticillioides, or Trichoderma
viride ) several weeks before harvest, and then collected at
harvest time. Authors found that using a neural network and
two NIR reflectance spectral bands centered at 715 nm and
965 nm, they could correctly identify more than 95% of both
asymptomatic kernels and kernels showing extensive discol-
oration. They also note that these two spectral bands can
easily be implemented on high-speed sorting machines for
removal of fungal-damaged grain.

In this study, we only used the single-kernel reflectance
spectra (550 to 1700 nm) data. There were a total of N =
1648 data points consisting of d = 241 dimensional feature
vectors. We concentrated on the problem of differentiating
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Figure 1: Sample measurements from infected and undam-
aged corn kernels.

infected and undamaged kernels from each other, hence we
had a binary classification problem.

In the corn kernel dataset, the spectrometer measures the
absorbance of the plant. The reflectance spectra of the corn
kernels between 550 and 1700nm are the 241 features. A
set of measurements for infected and undamaged kernels are
shown in Figure[I] At the first glance to Figure[I] the 'red’s
and ’blue’s are most separable at the beginning and at the
end of the reflectance spectra. That is to say the features
[1st - 15th] (corresponding to 550nm to 625nm) and [200th
- 241th] (corresponding to 1500nm to 1700nm) are the best
choices.

The covariance matrix (not shown due to insufficient
space) also has its biggest diagonal values at regions [200th
feature - 241th feature] and [1st feature - 15th feature] and
[175th feature - 185th feature] respectively. The performance
results for selecting 5 and 20 features from the most distinc-
tive region ([200th feature - 241th feature]) are compared
with the same size PCA using Fisher’s Linear Discriminant
in Table[T] 5 (or 20) features are randomly selected from the
given feature interval and mean value of the 10 fold cross
validation error is reported.

In many applications, the data is preprocessed before fea-
ture selection/dimensionality reduction. While this spectral
data do not need normalization, smoothing operation im-
proves the separability. We think this is because the neigh-
bors carry information in spectral datasets. Another advan-
tage of the smoothing process is the elimination of the out-
liers, which was of secondary importance for us since the
dataset does not have much off-mean elements. The im-
provement with smoothing is obvious from error reports.
(Table [TI}) These results are obtained by using a gaus-
sian smoothing filter (FWHM filter) which values the closer
neighbors more.

3. FEATURE SELECTION ALGORITHMS

Forward and backward feature selection and PCA (Princi-
pal Component Analysis) and ICA (Independent Component
Analysis) [6] are the most commonly used feature selection
and dimensionality reduction algorithms [3].

Backward and feature selection are wrapper methods,
where each feature is checked to be included or excluded af-
ter a classifier is trained and then tested or validated. For
large dimensional spaces these algorithms become impossi-
ble to run. Forward feature selection also suffers from the
fact that features that could be useful when together but use-
less when alone are missed.

Both PCA and ICA project the d dimensional input space
to a lower dimensional space d’.

The goal of ICA is to find a linear representation of non-
gaussian data so that the components are statistically inde-
pendent, or as independent as possible [6]. While the other
well known linear transformation methods (e.g. PCA) benefit
from the gaussianity of the data, ICA improves the classifier
performance in the opposite case.

In order to simply formulate what ICA does, let us as-
sume n dimensional observation vectors x = (x1,X2,...,Xn)"
which are zero mean random variables. Let s =
(s1,52,...,54)" be the d’-dimensional transform of x. Then
the problem is to determine a constant weight matrix W so
that the linear transformation of the observed variables

s=Wx ey

has certain properties. In other words, the observed signal x
can be written in terms of the independent components:

x=A"ls )

where A is the inverse (or the pseudo-inverse) of the W trans-
form matrix.

PCA (Principal Component Analysis) also uses a trans-
form matrix W. However the entries of W are the eigenvec-
tors of the covariance matrix of the inputs. Only the eigen-
vectors corresponding to the largest d’ eigenvalues are se-
lected.

4. PCA/ICA BASED FEATURE SELECTION

Both the PCA Based Dimensionality reduction and the ICA
Based Dimensionality reduction algorithms are based on the
idea that the features that are least important are the ones
whose contribution to the principal/independent components
are the least. The least important feature(s) are eliminated
and the principal/independent components are recalculated
based on the remaining features. The degree of contribution
of a feature is approximated as the sum of the absolute values
of the transform matrix W entries associated with the feature.

Let d be the input dimensionality, d’ be the PCA/ICA
reduced space’s dimensionality and d* be the number of fea-
tures to be selected. 0d shows the number of features to be
eliminated at each step. By default and in the experiments re-
ported below, 8d = 1, however this value could be increased
to make our feature selection faster. Initially d is assigned the
original input dimension. We give the steps of our algorithm
below:

e Calculate the PCs/ICs. Find the transform matrix W such
that Z = A « W and where Zy,, is the matrix of PCs/ICs,
Apnyq are the original inputs and Wy, is the transform
matrix.

e Sum the absolute values of entries for each row of W.
Each row of W matrix multiplies with the feature vector.
If the entries are ’small’ for any row of the W matrix, the
contribution of the corresponding feature to the princi-
pal/independent components is *small’.



e Find the minimum &6d sums and eliminate the corre-
sponding features. d = d — dd.

e If d > d* (there are still more features than needed) go
back to the first step, using the features remained after
the elimination.

While the ICA algorithm optimizes the number of inde-
pendent components at each step of feature elimination, the
number of principal components can be chosen at the very
first step. The only limitation is that the number of princi-
pal components must be less then or equal to the number of
features to be retained.

5. RESULTS
5.1 Classifiers Used

Two different classifiers, Fisher’s linear classifier and logistic
linear classifier, are used to test the proposed algorithm [13)
3.

Fisher’s linear classifier finds the linear discriminant
function between the classes in the dataset by minimizing
the errors in the least square sense. Logistic Linear classi-
fier performs the computation of the linear classifier for the
dataset by maximizing the likelihood criterion using the lo-
gistic (sigmoid) function. In logistic discrimination, rather
than modeling the class-conditional densities, we model their
ratio. [1]].

5.2 Experimental Results

We report the experimental results for the original and pre-
processed spectra data. Tables 2 and 3 show the mean 10-fold
cross validation accuracies for the original input features. Ta-
bles 4 and 5 show the results when the data is preprocessed.
Preprocessed data is obtained by smoothing with FWHM
(full width at half maximum) pass-band interference filters.
In both cases, the feature vectors are not normalized to zero
mean and unit variance, because there is a lot of correlation
between neighboring feature components and normalization
could loose this information.

We compare our PCA and ICA based algorithms’ accu-
racy to that of backward and forward feature selections and
to PCA/ICA. Our methods sometimes outperform the back-
ward/forward selection. Note that for very large datasets, for-
ward/backward feature selection may not be feasible. So, as
the input space dimensionality grows, PCA/ICA based di-
mensionality reduction algorithm becomes a stronger alter-
native to forward/backward selection.

Our method performs better than PCA or ICA when the
same number of principal/independent components are used.
Note that for the real time corn detection problem, instead
of dimensionality reduction provided by PCA/ICA, feature
selection provided by our method would be preferable.

We also compare the speed of our algorithm to that of
backward feature selection in Table 6 when Fisher’s linear
discriminant classifier is used. The results are reported in
seconds and are measured on a 3.2 P4 dual core processor
with 2Gb Ram where one processor is dedicated for each
time consumption measurement case. Our algorithm is a lot
faster than backward feature selection.

! Although we did experimented with the support vector classifier, we
were not able to get results in a reasonable time for our data set, hence we
could not include it here.

6. CONCLUSIONS AND FUTURE RESEARCH

We presented a fast and accurate feature selection algorithm
that is based on PCA/ICA. Our algorithm selects features that
result in as good classifier accuracy as forward/backward se-
lection and is a lot faster than those algorithms. Although,
for 271 dimensional corn data backward/forward selection
algorithms could be implemented offline, these algorithms
become infeasible for very large (thousands of) dimensional
datasets. The features selected also result in better clas-
sification accuracy then using the same number of princi-
pal/independent components.

In the near future, we are planning to experiment on im-
proving the speed of our algorithm by eliminating a number
of least important features as opposed to a single feature at
a time (see 8d in Section M. Time complexity analysis of
the algorithm is also among our feature work. The current
version of the algorithm requires the inputs to be positive.
An extension to the more general inputs case is necessary so
that we can test the algorithm on other data sets, such as, for
example, UCI Machine Learning Repository data.
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Table 1: Mean validation error for Fisher’s Linear Discriminant (No preprocessing).

NUM FEATURES PCA RANDOM CHOSEN FROM RANDOM CHOSEN FROM

200TH-241TH 200TH-241TH (SMOOTH)
5 0.130 0.070 0.064
20 0.076 0.046 0.035

Table 2: Mean validation error for Fisher’s Linear Discriminant (No preprocessing).

NoO.OF BACKWARD FORWARD PCA ICA PCA ICA
FEATURES FEATURE FEATURE BASED BASED

SELECT. SELECT.  FEATURE FEATURE

SELECT.  SELECT.

1 0.205 0.205 0.205 0.205 0.266 0.266
3 0.103 0.094 0.134 0.137 0.120 0.120
5 0.067 0.063 0.118 0.129 0.113  0.113
10 0.029 0.038 0.098 0.045 0.099  0.097
20 0.001 0.006 0.035 0.024 0.079  0.079
30 0.001 0.007 0.023 0.017 0.018 NA
200 0.000 0.001 0.001 0.002 0.000  NA

Table 3: Mean validation error for Logistic Linear Classifier (No preprocessing).

No.OF BACKWARD  FORWARD PCA ICA PCA ICA
FEATURES FEATURE FEATURE BASED BASED
SELECT. SELECT.  FEATURE FEATURE
SELECT.  SELECT.
1 0.205 0.204 0.206 0.205 0.260 0.260
3 0.097 0.087 0.149 0.132 0.133  0.133
5 0.043 0.055 0.121 0.123 0.126 0.126
10 0.018 0.037 0.076 0.038 0.094 0.093
20 0.009 0.018 0.023 0.027 0.057 0.057
30 0.008 0.004 0.024 0.020 0.013 NA
200 0.001 0.001 0.001 0.003 0.000  NA

Table 4: Mean validation error for Fisher’s Linear Discriminant (Smooth Data).

NoO.OF BACKWARD FORWARD PCA ICA PCA ICA
FEATURES FEATURE FEATURE BASED BASED

SELECT. SELECT.  FEATURE FEATURE

SELECT.  SELECT.

1 0.277 0.205 0.206 0.205 0.266 0.266
3 0.135 0.093 0.134 0.089 0.119 0.119
5 0.084 0.065 0.112 0.085 0.114 0.114
10 0.026 0.032 0.099 0.066 0.102  0.095
20 0.012 0.021 0.043 0.032 0.082 0.082
30 0.005 0.011 0.018 0.018 0.018 NA

200 0.000 0.000 0.001 0.001 0.000 NA




Table 5: Mean validation error for Logistic Linear Classifier (Smooth data).

No.oF BACKWARD FORWARD PCA ICA PCA ICA
FEATURES FEATURE FEATURE BASED BASED

SELECT. SELECT.  FEATURE FEATURE

SELECT.  SELECT.

1 0.205 0.205 0205 0.205 0.260 0.260
3 0.122 0.087 0.140 0.088 0.132  0.132
5 0.046 0.054 0.104 0.083 0.124 0.124
10 0.024 0.030 0.085 0.056 0.092 0.088
20 0.012 0.022 0.030 0.037 0.059 0.059
30 0.010 0.014 0.013 0.019 0.015 NA
200 0.001 0.000 0.000 0.001 0.000  NA

Table 6: Time required for feature selection and training using Fisher’s Linear Discriminant.

No.oF BACKWARD PCA ICA
FEATURES FEATURE BASED BASED
SELECT. FEATURE  FEATURE
SELECT.  SELECT.
3 7886 182 2834
5 7885 182 2834
10 7883 182 2833
20 7876 182 2828

30 7864 181 2820
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