
An Improvement of Centroid-Based Classification Algorithm for Text
Classification

Zehra Cataltepe, Eser Aygun
Istanbul Technical Un.

Computer Engineering Dept.
Ayazaga, Sariyer, Istanbul, Turkey

cataltepe@itu.edu.tr, eser.aygun@gmail.com

Abstract

k-nearest neighbor and centroid-based classification al-
gorithms are frequently used in text classification due to
their simplicity and performance. While k-nearest neigh-
bor algorithm usually performs well in terms of accu-
racy, it is slow in recognition phase. Because the dis-
tances/similarities between the new data point to be rec-
ognized and all the training data need to be computed. On
the other hand, centroid-based classification algorithms are
very fast, because only as many distance/similarity compu-
tations as the number of centroids (i.e. classes) needs to
be done. In this paper, we evaluate the performance of
centroid-based classification algorithm and compare it to
nearest mean and nearest neighbor algorithms on 9 data
sets. We propose and evaluate an improvement on centroid-
based classification algorithm. Proposed algorithm starts
from the centroids of each class and increases the weight of
misclassified training data points on the centroid computa-
tion until the validation error starts increasing. The weight
increase is done based on the training confusion matrix en-
tries for misclassified points. The proposed algorithm re-
sults in smaller test error than centroid-based classification
algorithm in 7 out of 9 data sets. It is also better than 10-
nearest neighbor algorithm in 8 out of 9 data sets.

We also evaluate different similarity metrics together
with centroid and nearest neighbor algorithms. We find
out that, when Euclidean distance is turned into a simi-
larity measure using division as opposed to exponentiation,
Euclidean-based similarity can perform almost as good as
cosine similarity.

1 Introduction

As the size of the internet grows, ability to automati-
cally cluster or classify documents, accurately and fast is

becoming more and more important. While in some cases
there is no or small number of labeled documents, in some
other cases there is a set of labeled documents. The first set
of problems is solved using (unsupervised) clustering tech-
niques [7], while the second type of problems are solved
using (supervised) classification techniques [11]. In this
study, we focus on labeled problems and hence classifica-
tion methods.

One of the most popular and simple text classification
methods is the k-nearest neighbor classification [1]. Al-
though it has been shown to perform quite well, compa-
rable to even SVMs [3], k-nearest neighbor algorithm gets
slower as the number of documents in the training set in-
creases. There have been attempts to make k-nearest neigh-
bor method faster, for example by obtaining approximate
solutions [6, 10] or by centroid-based methods [5, 8]. In this
study, we evaluate improvements on centroid-based classi-
fication algorithms.

Traditionally, the feature vectors for the classification
task are obtained using stop word removal, stemming and
tf-idf (Term Frequency-Inverse Document Frequency) com-
putation. The feature vector for each document is very high
dimensional (total number of words in the corpus) and in-
herently sparse. The classification or clustering algorithms
depend on a measure of similarity/distance between docu-
ments. It has been shown in [12] that, for document cluster-
ing, cosine, Pearson and extended Jaccard similarities per-
form a lot better than an Euclidean-distance based similar-
ity. In this study, we evaluate the performances of algo-
rithms using different similarity metrics and find out that
the Euclidean-distance based similarity could perform well
when a proper transformation to similarity is used.

The rest of the paper is organized as follows: In Section
2 we describe the datasets we used. Section 3 describes the
similarity metrics we used and also the classification algo-
rithms used. A new classification algorithm is also intro-
duced in this section. In Section 4 we discuss the results of

our experiments. The paper closes with the conclusions in
Section 5.

2 Data

We used yahoo news and classic3 [2] data
sets and data sets available from Karypis Lab
(http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/-
datasets.tar.gz) for performance comparison of different
algorithms. For all data sets, first stop words were removed
from documents. Then Porters stemming algorithm [9]
was used to compute roots of words. Following [12]s
suggestion, words whose frequencies in a document were
outside [0.01-0.1] range were removed and the remaining
words were used for tf-idf computation. Table 1 gives a
summary of all data sets we used.

3 Similarity Metrics and Classification Algo-
rithms

Let x and y be the tf-idf weight vectors of two docu-
ments. We consider the following similarity metrics [12] as
a measure of how close x and y are:

• Cosine similarity:

sc(x, y) =
xty

||x||||y|| (1)

• Pearson Correlation (x̄ denotes the average of x over
all feature dimensions):

sp(x, y) = 0.5(
(x − x̄)t(y − ȳ)
||x − x̄||||y − ȳ|| + 1) (2)

• Euclidean-based similarity computed by an exponen-
tial transformation

se1(x, y) = e−||x−y||2 (3)

• Euclidean-based similarity computed by division:

se2(x, y) =
1

1 + ||x − y||2 (4)

We use the following classification algorithms:

• [kmeans]: Classification using the centers determined
by k-means clustering algorithm: The k-means algo-
rithm starts with initial random centers chosen from
the data set. For each data point the closest center is
found, and then the centers are recomputed using data
points clustered around the same center. The algorithm

terminates when the center memberships dont change
anymore. Although k-means is actually a clustering al-
gorithm, it can be used as a preprocessing step for clas-
sification, especially when the number of labeled data
points is much less than the number of training data
points. We use k-means for classification as follows:
We determine the label of each center as the major-
ity label among the closest training data points to that
center. A test point is labeled with the label of center
closest to it.

• [1nn]: 1-nearest neighbor classification: The training
data and their labels are stored. When a new point is
tested, the closest point is found from the training set,
the label of that closest point is assigned to be the class
of the test point.

• [10nn]: 10-nearest neighbor classification: Same as
1-nearest neighbor, except instead of 1, membership
of 10 points from the training set determine the class
membership of a new test data point.

• [Centroid]: Centroid-based classification: Compute
one centroid per class, as the mean of the training data
points in that class. A new test point is classified ac-
cording to its similarity to the centroids.

• [CentroidW]: Centroid-based classification using a
weighted mean of data points as the centroid point:
Compute one centroid per class as the weighted mean
of the training data points in that class. A new test
point is classified according to its similarity to the cen-
troids. We first start with equal weights for each data
point around a centroid. Let the training inputs X
be partitioned according to the class labels as X =⋃K

k=1 Xk where Xk = {xk
1 , xk

2 , . . . , xk
Nk

} denotes the
inputs that belong to class k. In CentroidW classifica-
tion scheme, we compute the centroid for class k, µk,
as:

µk = sumNk

i=1w
k
i ∗ xk

i (5)

Since the algorithm starts with the normal centroid,
initially, wk

i = 1
Nk

for all i and k.

We classify training data in all classes according to
the closest centroid to them and compute the confu-
sion matrix on the training error. Let j be the index
of a misclassified training data point from class k and
let mk

j ∈ 1, . . . , K be the (mis)predicted class. We
increase the weight wk

j according to:

wk
j = wk

j + 1 +
M(k, mk

j)
sumK

k,k′=1,k �=k′M(k, k′)
(6)

where M(k, k′) denotes the confusion matrix entry be-
tween classes k and k’. We set aside a validation set

(10% of training data) and compute the validation er-
ror. We use the weights at the minimum validation er-
ror as the weights for each training data point.

4 Results

We evaluate test performance of each algorithm as fol-
lows: We randomly partition the available data set into 90%
training and 10% test set. We make sure each class has rep-
resentation proportional to their numbers in training data.
We measure the classification error (which is 1 - accuracy)
on the test set for each method. We report the average test
error over 10 different train/test partitions for each algo-
rithm below.

We have first examined the similarity metrics we de-
scribed above and found out that cosine, Jaccard similarities
and Pearson correlation show very similar behavior, while
Euclidean-based similarities are usually worse than these
three similarities. We have also found out that Euclidean-
based similaritys performance depends on the transforma-
tion used to turn the distance to a similarity. Table 2 shows
these results in more detail.

As seen in Table 3 centroid-based classification used
with cosine similarity performs better than 10-nn in 8 out
of 9 data sets that we experimented on. Considering the
fact that centroid-based classification is much faster and re-
quires much little memory compared to k-nearest neighbor,
we believe that this is very good reason to use centroid-
based classification as opposed to k-nearest neighbor. We
note that computing the optimal value of k using cross-
validation could result in smaller test errors for k-nearest-
neighbor method. We should also confirm previous ob-
servation by other authors (see for example [3]) that large
values of k perform usually better than k=1 when using k-
nearest neighbor for text classification.

According to Table 3 and Figure 1, for 6 out of 9 data
sets, CentroidW results in better test error than centroid-
based classification.

We should note that, although we tried using medoid
(i.e. the training data point in class i whose similarity to
all other training data points in class i is maximum), re-
sulted in worse performance than using centroid. We think
that this is due to the fact that the tf-idf vectors are very
sparse and the mean vector has a better chance of being
close to most of the training data points than medoid. An-
other method we thought made sense, tried and did not work
is using a robuster centroid by not considering alpha¿0 per-
cent of training data points that are farthest away from the
centroid (alpha-trimmed mean). Giving weight to a train-
ing data point proportional to its similarity to the centroid
did not result in any improvements either. These results
show that due to the sparsity and high dimensionality of tf-
idf weights, methods that could have worked in some other

Figure 1. Test error of each method on differ-
ent data sets.

pattern recognition problem may not necessarily work in
text classification.

We evaluated the performance of centroid-based classi-
fication and other methods. We did our evaluation based on
the mean (D̄) and standard deviation (S) of the paired er-
ror differences D̄ of nearest-mean, 1-nn, 10-nn algorithms
and the centroid based classification algorithm [4]. The t-
statistic value T0 = D̄

√
9

S for these algorithms were 8.0, 3.6
and 3.1 respectively, which means that with 95% confi-
dence, the centroid algorithm performs better than nearest-
mean, 1-nn and 10-nn algorithms. The same statistic for
the weighted centroid algorithm is 0.22 which means the
weighted centroid-based algorithm is not statistically sig-
nificantly better than the centroid-based classification al-
gorithm when all 9 datasets are considered. Please note
that when the tr11 and tr12 datasets are not considered, the
weighted centroid algorithm is better than the centroid al-
gorithm with 95% confidence.

5 Conclusions

We have examined centroid-based classification, k-
nearest neighbor classification and an proposed an improve-
ment centroid based classification. We have also evaluated
performance of different similarity metrics.

Acknowledgements

Zehra Cataltepe was supported partially by Tubitak
EEEAG project 105E162. Authors would like to thank

Deniz Isik, Utku Ozbek and Onur Dolu of Istanbul Techni-
cal University Computer Engineering Department for their
help with processing of Classic3 data set and Karypis Lab
for making most of the other data sets in the paper available.

References

[1] L. Baoli, L. Qin, and Y. Shiwen. An adaptive k-nearest
neighbor text categorization strategy. ACM Transactions on
Asian Language Information Processing, 3(4):215–226, De-
cember 2004.

[2] D. Boley, M. Gini, R. Gross, E. Han, K. Hastings,
G. Karypis, V. Kumar, B. Mobasher, and J. Moore.
Partitioning-based clustering for web document categoriza-
tion. Decision Support Systems, 27:329–341, 1999.

[3] A. Cardoso-Cachopo and A. Oliveira. An empirical com-
parison of text categorization methods. In String Processing
and Information Retrieval: 10th International Symposium,
SPIRE 2003, Manaus, Brazil, October 8-10, pages 183–196,
2003.

[4] T. G. Dietterich. Approximate statistical tests for comparing
supervised classification learning algorithms. Neural Com-
putation, 10:18951924, 1998.

[5] E. Han and G. Karypis. Centroid-based document classifi-
cation: Analysis & experimental results. In 4th European
Conference on Principles and Practice of Knowledge Dis-
covery in Databases (PKDD), pages 424–431, 2000.

[6] P. Indyk and R. Motwani. Approximate nearest neigh-
bors: towards removing the curse of dimensionality. In 13th
annual ACM symposium on Theory of computing, Dallas,
Texas, United States, pages 604–613, 1998.

[7] A. Jain, M. Murty, and P. Flynn. Data clustering: A review.
ACM Computing Surveys, 31(3):264–323, 1999.

[8] V. Lertnattee and T. Theeramunkong. Effect of term distribu-
tions on centroid-based text categorization. Information Sci-
encesInformatics and Computer Science: An International
Journal, Special issue: Informatics and computer science
intelligent systems applications, 158:89–115, January 2004.

[9] M. F. Porter. An algorithm for suffix stripping. Program,
14(3):130–137, 1980. http://www.tartarus.org/

[10] V. Ramasubramanian and K. Paliwal. An efficient
approximation-elimination algorithm for fast nearest-
neighbour search based on a spherical distance coordi-
nate formulation. Pattern Recognition Letters, 13:471–480,
1992.

[11] F. Sebastiani. Machine learning in automated text catego-
rization. ACM Computing Surveys, 34(1):1–47, 2002.

[12] A. Strehl, J. Ghosh, and R. Mooney. Impact of similarity
measures on web-page clustering. In Proc. AAAI Workshop
on AI for Web Search (AAAI 2000), Austin, TX, 2000.

Data set Source No of No of No of No of Class distribution
docs orig. words filtered words classes

ynews Yahoo news 2340 21839 2903 20 142 9 24 44 74 278 70 21
14 125 65 248 158 18
187 54 494 114 141 60

classic3 Boley et. al. 3891 15530 1146 3 1460 1398 1033
la1 TREC 3204 31472 3236 6 555 341 273 943 738 354
la2 TREC 3075 31472 3329 6 905 248 301 759 487 375
la12 TREC 6279 31472 3273 6 1042 642 521 1848 1497 729
re0 Reuters 1504 2886 1007 13 16 608 319 42 60 21 80

20 37 39 11 38 15
re1 Reuters 1657 3758 1313 25 48 371 60 19 37 99 106 137

17 20 330 27 15 31 50 87 18
42 31 32 10 13 18 20 19

tr11 TREC 414 6429 3726 9 52 132 69 21 20 74 11 29 6
tr12 TREC 313 5804 3557 9 30 34 35 29 93 54 29 9

Table 1. Data sets used.

Data set Similarity metric k-means 1-nn 10-nn Centroid

classic3 sc 0.02±0.01 0.04±0.01 0.02±0.01 0.02 0.01
classic3 sp 0.02±0.01 0.05±0.01 0.02±0.01 0.02±0.01
classic3 se1 0.64±0.02 0.65±0.02 0.65±0.03 0.67±0.02
classic3 se2 0.48±0.13 0.20±0.02 0.39±0.02 0.01±0.01
ynews sc 0.46±0.04 0.33±0.02 0.27±0.02 0.23±0.02
ynews sp 0.45±0.04 0.33±0.02 0.28±0.02 0.24±0.02
ynews se1 0.80±0.01 0.89±0.02 0.87±0.02 0.94±0.02
ynews se2 0.75±0.02 0.52±0.03 0.80±0.02 0.32±0.03

Table 2. Test error of different similarity metrics on Classic3 and Yahoo News data sets.

Data set kmeans 1-nn 10-nn Centroid CentroidW

ynews 45.8±1.1 31.4±0.7 26.4±1.0 20.9±0.8 20.8±0.7
Classic3 4.9 ±2.5 4.5±0.2 2.4±0.1 1.5±0.2 1.4±0.2
la1 43.3±2.2 26.7±0.6 22.1±0.6 15.2±0.5 14.4±0.8
la2 38.5±1.6 24.8±0.7 19.6±0.6 13.8±0.3 13.3±0.4
la12 40.3±2.0 25.2±0.6 21.4±0.4 15.1±0.4 13.6±0.4
re0 50.4±1.2 28.8±0.8 29.6±0.7 31.8±1.2 31.2±1.2
re1 49.8±1.8 25.4±1.3 26.4±1.0 26.6±1.3 26.4±1.2
tr11 47.6±3.1 28.3±2.3 21.7±2.1 19.3±2.6 21.5±2.4
tr12 56.5±3.6 29.0±2.1 27.4±2.8 21.0±2.6 21.9±2.5

Table 3. Test error of each classification method on different data sets.

