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Abstract

     This paper has three contributions to the fields of power 
plant monitoring. First, we differentiate out-of-range 
detection from fault detection. An out-of-range refers to a 
normal operating range of a power plant unseen in the 
training data. In the case of an out-of-range, instead of 
producing a fault alarm, the system should notify the 
operator to include more training data which capture this 
new operating range. Second, we apply support vector one-
class classifier to out-of-range detection for its good 
volume modeling ability. Third, we propose to use hidden 
variables in regression models for fault detection. This is 
shown to be much better than prior work in terms of 
spillover reduction. 

1. Introduction 

     The task of monitoring a power plant is to detect faults 
at an early stage and avoid damages to the major 
components of the plant e.g. gas turbine, steam turbine, 
generator. In the following, we will concentrate on gas 
turbines, which are widely used in power generation and 
which need a high amount of attention during operation. 
But the presented approach is not restricted to power plant 
equipment and it can also be applied in other industrial or 
technical areas, where operation data are available. For gas 
turbines, early fault detection is typically achieved by 
analyzing a set of sensors, installed in different parts of the 
engine measuring the output and additional temperatures, 
flows and pressures at critical locations. When the turbine 
is working properly, the sensor data should be distributed 
in a normal operating range. If the sensor data deviate 
much from this range, there may be a fault (such as a crack 
in one of the transition pieces of a gas turbine) and a fault 
alarm should be made. Various statistical models including 
neural networks, fuzzy logic, independent component 
analysis and etc have been proposed to learn this normal 
operating range from training data [1-3]. 
     However, not every deviation is due to a real fault; it 
can be due to another normal operating range, which is 
not seen in the training data. We refer to this kind of 
deviation as an out-of-range. An out-of-range should be 
treated differently from a fault, since the machine is still 
operating normally. More historical data that capture this 
new operating range should be used to retrain the model to 
guarantee its accuracy. A good power plant monitoring 

system should be able to handle both out-of-range 
detection and fault detection. However, most prior work 
has ignored the out-of-range problem.  
     We differentiate two sets of sensors. We refer to the 
first set as process drivers, such as fuel flow and inlet 
temperature sensors, which represent the inputs of a gas 
turbine. We refer to the second set as dependent sensors,
such as power, blade path temperatures, pressures and 
vibration sensors, which represent internal data and the 
outputs of the engine. We use process drivers for the out-
of-range detection, since they determine the operating state 
of the plant. Process drivers are relatively independent to 
each other. Thus, the distribution of the process drivers is 
more like a volume than a surface. We apply support 
vector representation machine (SVRM) to this problem for 
its excellent capability for volume modeling [4, 5]. 
     Fault detection is only applied to dependent sensors, 
since they measure the performance of the plant. In 
general, fault detection consists of two steps: sensor 
estimation and decision [1].  In the sensor estimation step, 
correct sensor values are estimated; the residues 
(differences) between the observed values and estimated 
values are calculated. In the decision step, if the residues 
are statistically different from zero, the corresponding 
sensors are marked as faulty. Sensor estimation is our 
major concern and it must be accurate. Specifically, a 
faulty sensor’s residue should be close to its real deviation 
and a normal sensor’s residue should be close to zero. A 
common undesired phenomenon for a statistical model is 
that a normal sensor’s residue is affected by a faulty 
sensor’s residue such that both are not close to their ideal 
values. This is referred to as a spillover problem [3] and 
should be avoided. 
     Based on the input-output view of a gas turbine noted 
above, a straightforward solution for sensor estimation is to 
use process drivers to estimate dependent sensors. This 
kind of estimation is also referred to as regression [1]. 
However, typically, only part of all process drivers are 
known and many others are unavailable. For example, air 
humidity is also a process driver, but it is not measured in 
many circumstances. Thus, only using this partial input 
information, a regression model will not be accurate. 
     A solution for this problem is to use the correlation 
between dependent sensors. For example, in a combustion 
turbine engine, all blade path temperature sensors are 
highly correlated such that one sensor could be used to 
predict the value of another sensor. Inferential sensing 
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which uses such correlation information for sensor 
estimation has been proposed [6]. Autoassociative neural 
networks, kernel regression and its variations: multivariate 
state estimation techniques (MSET) and the support vector 
regression (SVR) models have been employed based on 
this idea [6]. In all these regression models, one correlated 
sensor is used as the output of the regression model and all 
the other correlated sensors are used as the inputs. 
Spillover exists if any of the input correlated sensors is 
faulty. In this paper, we propose a novel method to reduce 
spillover in prior regression models. We replace all the 
input correlated sensors by a single hidden variable, 
estimated from these correlated sensors. Based on the 
output estimates, we re-calculate the hidden variable to 
reduce the spillover effect due to possible faulty sensors.  
     This paper is organized as follows. In Sect.2, we 
address using support vector representation machine for 
out-of-range detection. In Sect.3, we describe the use of 
hidden variables in regression models for fault detection. 
In Sect.4, we present our test results. We summarize this 
paper in Sect.5.  

2. SVRM for Out-of-Range Detection 

     Out-of-range detection is essentially a one-class 
classification problem, which discriminates between the in-
range class and the out-of-range class. No sensor 
estimation is necessary. Let y denote the sensor vector 
consisting of M process drivers. As noted in Sect.1, process 
drivers are relatively independent to each other (i.e. they 
can vary independently without being affected by each 
other). Thus, the distribution of y is more like a volume 
than a surface or a curve. We thus apply support vector 
representation machine (SVRM) [5] to model the 
distribution of y for its good ability for volume modeling. 
Suppose that we are given L training vectors {y1,y2, ..., yL}
from the in-range class. The training task is to find an 
evaluation function f(y), which gives the confidence of the 
input y being in the in-range class. We define the decision 
region R ={y: f(y) T} to contain those samples y giving 
evaluation function values above some threshold T. To 
achieve a high recognition rate, training vectors should 
produce high evaluation function values.  
     We borrow the kernel method used in support vector 

machines, which defines a mapping  from the input space 

to the feature space [7]. The explicit form of  is not 

necessary. Rather, only the inner product (yi)
T (yj) need 

be specified to be some kernel function. We consider only 

the Gaussian kernel exp(- yi-yj
2/2 2), since it simplifies 

volume estimation and has other desirable properties. The 

evaluation function has an inner product form: 

  f(y)=h
T (y),                               (1) 

where the solution h for our SVRM satisfies 
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The second condition in (2) insures large evaluation 
function values for the training set greater than some 
threshold T. We minimize the norm h  of h in the first 
condition in (2) to reduce the volume of R (to provide 
rejection of out-of-range samples). In (2), we minimize the 
square of h , since such optimization is easily achieved 
using quadratic programming. Slack variables are also 
introduced to address outliers in training data. The details 
of the SVRM can be found in [5]. Using the SVRM, the 
out-of-range detection is performed as follows. To classify 
an input y, we compute the evaluation function f(y) in (1); 
if this is T=1, we classify y as in-range; otherwise, it is 
out-of-range. In case of an out-of-range, the operator is 
notified to include more historical data which cover this 
new range. 

3. Use of Hidden Variables in Regression 

Models for Fault Detection 

     In this section, we address the fault detection problem, 
which requires sensor estimation of each dependent sensor. 
We present a new strategy, which can be combined with 
any regression model and help to reduce spillover. Instead 
of inputting multiple correlated dependent sensors (which 
may contain a faulty sensor) to a regression model, we 
compute a hidden variable from these correlated sensors 
and only input this hidden variable to the regression model. 
A faulty sensor contributes little to this hidden variable and 
thus shows little effect on the output.  
     We now detail our method. We divide all dependent 
sensors into several groups; within each group, all the 
sensors are highly correlated. This process can be done 
either using domain knowledge or correlation analysis 
techniques (see chapter 15 in [2]). We only use one such 
group as an example. Suppose that there are N correlated 
sensors in this group, with their values denoted by x1, x2,
…, xN. Since they are highly correlated, we define a hidden 
variable t such that x1=g1(t)+ 1, x2=g2(t)+ 2, …, xN=gN(t)+

N, where gi(t) is a sensor function defined on t. t can be 
viewed as an unknown process driver to the power plant. i

is the sum of the modeling error (which could be attributed 
to other known or unknown process drivers) and noise. 
Since xi are highly correlated, i is small and is omitted for 
the rest of this paper for simplicity. If we know t, we can 
use t as a new input to a regression model to provide more 
information in sensor estimation. We assume that gi is 
invertible such that t =gi

-1(xi). For all the cases we consider, 
this is satisfied. If this is not satisfied, we divide t into 
several segments such that in each segment the sensor 
function gi is invertible.  
     We now present two ways to compute t, based on x1, x2,
…, xN. In the first approach, we define simple parametric 
forms of gi. For example, xi =gi(t)=ait+bi, where ai and bi

are the scaling and dc components for the ith sensor, 
respectively. This is the approach we use and it suffices for 
all the cases we meet. All the parameters ai and bi are 
computed using least square methods from the training 
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data. In the second approach, to cope with more 
complicated correlation relationship, we consider 
nonparametric forms of gi and can apply principal curves 
or their variations [8] to obtain gi. For both approaches, we 
can simplify the problem by making t = xj, which can be 
any of xi. Thus, xi =gi(t) =gi(xj), where i=1,2,…, N.
     Using either of the above two approaches, we can get an 

estimate of t from each xi using gi
-1. To reduce the effects 

of modeling error and noise, we average all these 

estimates: 
N

i
iii xgwt

1

1 )( ,                            (3) 

where wi is the confidence weight for each t estimate and 
N

i
iw

1

1 . Fig.1 shows the system structure of our 

proposed regression model. kx̂  is the estimate for the kth

correlated sensor. The inputs consist of all the process 
drivers and the hidden variable t. This is very different 
from prior work, which directly used x1, x2, …, xk-1, xk+1,
…, xN as the inputs to the regression model (in fact, it is 
unknown if the process drivers were used as inputs [6]). 
The robustness of a prior work model is questionable, since 

if any of xi is faulty, kx̂ will be affected. We handle this 

spillover problem by assigning different confidence weight 
wi for different correlated sensors such that if the ith sensor 
is likely to be faulty (with a large residue), the 
corresponding wi is low. We update wi based on the residue 
between the ith sensor and its estimate: 
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where q(d) is an decreasing error function defined between 
0 and +  and it produces a value between 0 and 1. We 
choose a Gaussian function for q(d) such that q(100) = a 
very small number (0.00001).  
     We now detail the steps of our sensor estimation 
algorithm. During training, we first compute gi

-1 for all 
correlated dependent sensors using the training data. Then, 
we train each regression model in Fig.1 with wi=1/N,
where  i=1,2,…, N. During monitoring, we use our model 
in Fig.1 to compute the estimate for each correlated 
dependent sensor. Then, we update wi using (4). If the 
estimates do not vary much from those obtained in the 
previous iteration, we output the estimates; otherwise, we 
repeat the above procedure. 

     Several points need to be noted. First, the number of 
regression models is equal to the number of dependent 
sensors, with one regression model (Fig.1) for one 
dependent sensor. Second, we assume that only a small 
number of sensors in each correlation group can be faulty. 
If most of them are faulty, the calculation of the hidden 
variable t in (3) is not accurate. However, this is seldom 
the case. If the number of sensors in one correlation group 
is small (< 4), we do not calculate t for this group. If there 
are K correlation groups, each containing a considerable 
number (  4) of sensors. The inputs for our regression 
model consists of all the process drivers and K hidden 
variables (one for each group). 

4. Test Results 

     Due to the limited space, we only present results for 
fault detection. We use data from a gas turbine of a 
European combined cycle power plant. A total of 19 
sensors are used, including three process drivers: gas flow, 
inlet temperature, inlet guide vane (IGV) actuator position, 
and 16 dependent blade path temperature sensors: 
BPTC1A, BPTC2A, ... and BPTC16A. These 16 BPTC 
sensors are known to be highly correlated. The task is to 
estimate the values of these 16 BPTC sensors from the 
observed values of all 19 sensors. There are a total of 1248 
data points. We use the first 600 data points in training and 
the remaining 648 data points in testing.  
     We could use real fault cases to test different 
algorithms. However, the correct value of a sensor is 
unknown and thus it is difficult to evaluate the accuracy of 
sensor estimation. We thus consider artificial faults. We 
add +60 degree step to BPTC1A, between data points 900 
and 1248. Figs.2a and b show the faulty sensor and a 
normal sensor BPTC9A, respectively.  
     We consider support vector regression (SVR) model [7, 
9] in our tests, although any regression model can be tested 
here. For the prior work method [6], we used three process 
drivers and 15 BPTC sensors as the inputs of the SVR; the 
output of the SVR is the estimate of the other BPTC 
sensor. Using our new system in Fig.1, the inputs of the 
SVR are three process drivers and the hidden variable t
(computed from all 16 BPTC sensors); the output of the 
SVR is the estimate of the other BPTC sensor. Note that 
for each method there are a total of 16 regression models, 
one for each BPTC sensor. We use parametric sensor 
function xi =gi(t)=ait+bi as noted in Sect.3. Figs.2c and d 
show the residues for the normal sensor BPTC9A using 
prior work method and our method, respectively. Spillover 
is clearly seen in Fig.2c while not noticeable in Fig.2d. 
     To test how different algorithms respond to different 
scales of the step faults, we vary the step fault magnitude 
from 0 to 100 in increments of 20 and repeat the above 
tests. We consider two errors: the spillover error (the 
average absolute residue in the affected period for all 15 
normal BPTC sensors) and the sensor estimation error (the 
average absolute difference between the estimate and the 

Fig.1. System structure of our regression model
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correct value of the faulty sensor in the affected period). 
Both errors should be small. We found that the spillover 
error of our method is nearly constant around 0.52, while 
that of the prior work method increases from 0.60 (when 
the step magnitude = 20) to 7.1 (when the step magnitude 
= 100). Thus, our method is much better than prior work in 
terms of spillover reduction. The sensor estimation errors 
of both methods are good, comparable and do not vary 
much with the step magnitude (around 0.25 for our method 
and 0.45 for prior work method). We attribute the good 
performance of the prior work method to the fact that the 
15 normal BPTC sensors used as inputs to estimate the 
faulty sensor are all normal sensors. It is expected that if 
more than one of these 16 BPTC sensors are faulty, the 
sensor estimation error for the prior work method will be 
large. 

5. Conclusion 

     An advanced and reliable power plant monitoring 
system should be able to handle both out-of-range 
detection and fault detection. However, most prior work 
has ignored the out-of-range problem. We apply support 
vector representation machine to process driver sensors for 
out-of-range detection. In cases of data exceeding the 
model training range, the system notifies the operator to 
include more historical data which capture this new 
operating state to retrain the model to guarantee its 
accuracy. In fault detection, we propose to use hidden 
variables in regression models to reduce spillover. Test 
results show the advantage of the proposed method. 
     Besides power plants, the idea of using hidden variables 
can be extended for other regression applications, in which 
original system inputs are insufficient to estimate the 
outputs. In a more general scenario, where there is 

inadequate information about the system inputs and 
outputs, advanced correlation analysis is needed to 
determine the inputs and outputs for a regression model. 
Our future work will address this. 
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Fig.2. Test results for prior work method and the proposed method. (a) faulty sensor BPTC1A with a +60 step between data
points 900 and 1248. (b) normal sensor BPTC9A. (c) residue of BPTC9A using prior work method. (d) residue of BPTC9A
using our proposed method. The horizontal axis represents the data points and the vertical axis represents the sensor magnitude.
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