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ABSTRACT 
We present a robust method to identify and isolate faulty 
sensors among a set of correlated sensors. For each sen-
sor, we estimate the sensor a number of times, using each 
of the other correlated sensors separately. We use the me-
dian of these estimates as the estimate for the sensor. 
When up to less than half of the sensors are faulty, this 
method identifies the faulty sensors accurately. Since the 
median is used and since estimates for the same sensor as 
opposed to different original sensor values are used in the 
median, this method is very robust. The method gives 
much better spill-over and error recognition rates, com-
pared to the traditional method of using the mean of the 
actual sensor measurements. 

1. INTRODUCTION 

In automated monitoring of plants and machines, a model 
is trained based on sensor data collected during the nor-
mal operation of the machine or plant. The new test sen-
sor data are used as input to the trained model and it is 
checked if the test data are in agreement with the training 
data. If the residuals (actual data - estimates) are higher 
than some thresholds for a sensor, then a fault is reported.  
Sometimes, a large number of sensors are correlated with 
each other. They measure the same physical entity (such 
as temperature or pressure) at the same or similar machine 
parts. If a sensor behaves unlike others (a drift or a step), 
it is important to identify that sensor as soon as possible. 
If the estimate for a sensor is based on other sensors, as in 
the case of auto-associative models, when one of the input 
sensors change, the change affects the estimate for the 
other sensors, too. If the output sensor is not one of the 
faulty sensors, then this is known as spillover (of the fault 
from the faulty sensor). In other words a fault is seen in 
the estimate of a sensor that is not actually faulty. If the 
output sensor is faulty, the fault is often underestimated. 
Although input driven models would not suffer from 
spillover, sometimes there aren’t enough input (independ-
ent) sensors to estimate output (dependent) sensors with 
small enough residuals [5]. [9] is an attempt to overcome 
this problem by adding the mean of dependent sensors to 
the list of input sensors. However, the mean is not robust 
against outliers [8]. Especially when there is a small num-
ber of independent sensors, or when the disturbance is 

big, the mean would be affected significantly from a dis-
turbance in one of the sensors.  
There are various methods of dealing with outliers in 
training data, see, for example [3,6] and [8]. These robust 
methods reduce the effect of outlier training data points 
on the model and give similar results to least mean 
squares method when there are no outliers. In this study 
we assume clean training data and concentrate on the 
problem of estimating the amount of faults on the test data 
as accurately as possible. There have been previous stud-
ies to detect and isolate faulty sensors among a set of cor-
related sensors. [1] used standardized least squares re-
siduals to eliminate faulty variables in an iterative proc-
ess. [7] used artificial neural networks and fuzzy logic to 
eliminate faulty sensors. [2,4] investigated different linear 
and nonlinear methods for detection of sensor faults. 
We present a method to identify and isolate faulty sensors 
in test data among a set of correlated sensors. For each 
sensor, we use all other sensors to estimate it. We use the 
median of the estimates given by the other sensors as the 
estimate for that sensor. Since median is more robust to 
outliers than mean, this method gives much better results 
than the traditional method of using the mean of the actual 
sensor measurements (simple redundancy [7]). 

2. MEDIAN OF THE ESTIMATES BY OTHER 
SENSORS AS THE ESTIMATE FOR THE 

SENSOR 

Assume that sensors  x1, x2,…,xn are being monitored and 
they are correlated.  Sensors xn+1,…,xm=u are the inde-
pendent sensors. We do not require the dependent sensors 
to be linearly correlated, we just require that each depend-
ent sensor xi can be estimated using each of the other de-
pendent sensors and the independent sensors. In other 
words 

! 

xi(t) = f ij (x j (t),u(t)) + eij  for some function 

! 

fij  and noise 

! 

eij ~ N(0," ij

2
) . (Please see figure 1.) One 

possible candidate for 
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fij  is the degree d polynomial 
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fij (x j (t)) = wij0 + wijk x j

k
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paper we use linear (i.e. degree 1 polynomial) functions 
for 
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fij .  



  
 

Figure 1. We first obtain an estimate of each dependent 
sensor in terms of the independent sensors and another 
dependent sensor. We use the median of the n-1 such esti-
mates to compute the robust estimate for the sensor. 
 

We assume that for time t=1,…,T fault-free training 
data  
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able. We denote all the training data for the ith sensor by 
the Tx1 column vector 
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' . We first solve (n-1) 
equations for each dependent sensor. For example for the 
ith sensor for 
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Let the estimate of sensor 

! 

x
i
 by sensor 

! 

x j  be 

! 

yij (t) = wij0 + wij1x j (t) . We compute the estimate for 
sensor 

! 

x
i
 at time t as 

! 

zi(t) = median j=1,..,n,i" j yij (t) . 
Note that when it is known that at most 

! 

"n  depend-
ent sensors are faulty, alpha-trimmed mean can be used 
instead of the median. The alpha-trimmed mean discards 
the largest and smallest 

! 

"n  numbers in the computation 
of the mean. Alpha-trimmed mean is equivalent to the 
regular mean for 

! 

" = 0and it is equivalent to the median 
for 

! 

" = 0.5 . 
Note also that if the estimation errors 

! 

eij  have differ-

ent variances 

! 

" ij

2 , weighted trimmed mean with weights 

proportional to 

! 

1

" ij

should be  used. 

3. EXPERIMENTAL RESULTS 

Together with our new method, we experimented on the 
following methods of sensor estimation:  

1. Mean of the original sensors 

! 

x j , 

2. Median of the original sensors 

! 

x j , 
3. Mean of the sensor estimates 

! 

yij , 
4. Median of the sensor estimates 

! 

yij . 
Method 1. is the traditional simple redundancy method 
used in for example [1]. In order to eliminate the different 
dc values for each sensor [1] suggested subtracting the 
first value of the sensor. In order to get less noisy results, 
we subtract the mean of 100 random samples in training 
data from each sensor. We used this pre-processing for all 
the methods above. 
 
In order to verify our results we used blade path tempera-
ture sensors from a power plant. These sensors are quite 
correlated with each other.  There are n=36 sensors. It is 
known that two of the sensors have an actual drift at the 
end of the available data. We partitioned the available 
data into three portions in time: a) clean training data b) 
clean data not used for training c) faulty data. We tested 
the four different methods of sensor estimation mentioned 
above. 
In order to test each method under different conditions, 
we inspected the residuals (actuals –estimates) for the 
faulty and non-faulty sensors. A good method should re-
sult in very small residual for a normal sensor (i.e. small 
spillover) and exactly the fault for the faulty sensor (i.e. 
good error recognition).  
 
We examined the residuals under the following condi-
tions: 

a) We used all n=36 sensors.  
b) We used only a subset n=6 of all available sen-

sors.  
We examined the models for the following types of faults: 

i. The actual fault on the sensor test data. Two sen-
sors drifted by about -20F.  

ii. We introduced a large drift (from 0 to -500F) on 
one of the sensors. The artificial drift is added on 
the clean data between the training data (begin-
ning, 0F) and the faulty test data (end, -500F). 

 
Figures 2-4 show our results. As seen in figure 3, 

when there are many correlated sensors and the faults are 
small, all methods perform similarly well. The fault is 
caught on the faulty sensor and the spillover is small on 
the normal sensors. However, when the number of corre-
lated sensors are small (see figure 2), the median of esti-
mates performs better than both of the mean methods.  The 
median of estimates is also better than the median of origi-
nals, as seen by the disturbances on the residuals of the 
good sensors. When the faults are large, as seen in figure 4 
with the artificial fault residuals, the median of estimates 
outperforms the mean methods. This result is expected 
since the median is more robust to outliers/noise than the 
mean. 

 



  

 
Figure 2. The residual behavior of each 4 methods on the faulty (solid) and normal (dashed) sensors for the real fault. In 

this plot only n=6 dependent sensors are used. The fault is a drift of about -20F. The median of estimates is the best method 
since it does not show any spillover (increased residual) on the normal sensors. 

 

 
Figure 3. The residual behavior of each 4 methods on the faulty (solid) and normal (dashed) sensors for the real fault. In 

this plot all n=36 dependent sensors are used. The fault is a drift of about -20F. All methods behave equally well when there 
are a lot of dependent sensors. 

 

  



 
 
Figure 4. The residuals for the faulty sensor when n=6 
sensors are used and an artificial drift is applied on the 
clean data between the training data (beginning, 0F) and 
the faulty data (end, -500F). Mean of the originals is the 
worst method and the median methods are the best. The 
difference between methods is more prominent when the 
fault is large. 
 
 

4. CONCLUSIONS 

We presented a new method to identify faults among a set 
of correlated sensors. The new method, first estimates 
each sensor in terms of other sensors one by one. The 
median of these estimates is used as the estimate for the 
sensor. This method outperforms the traditional mean of 
the original sensors estimate both in terms of error recog-
nition on a faulty sensor and spillover on the non-faulty 
sensors. The method is especially good when  

• the number of correlated sensors is small or  
• the amount of fault is large or  
• the fault is on a large proportion of sensors.  

Due to the breakpoint of the median [7] this method can 
find out the faulty sensor as long as less than half of the 
total number of sensors are faulty. 
 
The method can be used in cases where the estimates for a 
sensor are nonlinear. When the estimates are noisy, the 
method could be modified so that instead of the median a 
weighted average around the median (weighted trimmed 
mean) is taken to be the estimate.  
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