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Abstract— We used transmittance images and different learn-
ing algorithms to classify insect damaged and un-damaged wheat
kernels. Using the histogram of the pixels of the wheat images as
the feature, and the linear model as the learning algorithm, we
achieved a False Positive Rate (1-specificity) of0.12 at the True
Positive Rate (sensitivity) of0.8 and an Area Under the ROC
Curve (AUC) of 0.90± 0.02. Combining the linear model and a
Radial Basis Function Network in a committee resulted in a FP
Rate of 0.09 at the TP Rate of 0.8 and an AUC of 0.93± 0.03.

I. I NTRODUCTION

Infested wheat kernels cause loss of quality in the wheat
products. They also cause a lot more damage if they are put
into storage with other kernels. It is important to be able to
identify insect damaged kernels so proper decisions can be
made about them.

Current methods of insect detection such as cracking and
flotation [1], infraredCO2 analysis [2], immunological meth-
ods [3], NIR [4], and x-ray inspection [5] can be laborious,
slow, expensive, and ineffective at distinguishing a sound
kernel from a kernel that is internally infested. It is possible
that the use of acoustics [6] to detect insects may serve as
an alternative which would allow for recognition of kernels
where the insect has already emerged as well as those in which
the insect is still living inside the kernel. In this paper we
describe a method to identify insect damaged kernels based
on transmittance images. This method is fast and inexpensive
compared with the other methods.

We first segmented the individual wheat kernels from the
original transmittance images. Then we used the histogram of
pixel intensities from each kernel to decide if it was insect
damaged or not. We used a number of different algorithms,
namely the linear model, quadratic model, k-nearest neighbor,
linear model with weight decay and Radial Basis Function
Network. Linear model was the best of all the algorithms
with a False Positive Rate (1-specificity) of0.12 at the True
Positive Rate (sensitivity) of0.8 and an Area Under the ROC
Curve (AUC) of0.90±0.02. Although the radial basis function
network performed worse than the linear mode (an AUC of
0.77 ± 0.05), a committee of a linear model and a radial
basis function resulted in an improved FP Rate of0.09 at
the TP Rate of0.8 and an AUC of0.93 ± 0.03. We also

experimented with K-nearest neighbor model, quadratic model
and linear model with weight decay (ridge regression). All of
these learning methods resulted in worse performance than the
linear model.

II. W HEAT IMAGES AND FEATURES

Hard red winter wheat (H2) was used to obtain the images.
The insect damaged kernel images were taken from wheat
infested with rice weevil and kept at about a moisture of 11%.
Transmittance images were taken as 800 pixels/inch tif images
using an Epson Expression 1680 scanner. The exposure was
set to 20 and gamma to 1.22.

The original un-damaged and insect damaged wheat kernel
images were taken all together in two different shots. First
we segmented each single kernel out of the original pictures
using the blue component of the RGB. We obtained 355 good
and 364 insect damaged kernels. We rotated each image so
they had the maximum height and minimum width. Please
see figure 1 for some sample images. The background color
was white, so we determined the borders of each wheat image
based on the background color. The reflectance along the
borders of the image were affecting the features, so we cropped
10 pixels from each pixel row on each side of the wheat.

The histogram of red component of the pixels colors over
each wheat image was used as the input feature for the
learning algorithm. The 256 different Red components were
put into bins as follows: If the red value was less than
or equal to 80 the pixel was added into bin 0. If it was
larger than 250 it was added into the last bin. Otherwise,
the pixel was added into a bin in-between, each bin being
responsible for 5 different red values resulting with 36 input
features. In addition to these histogram values, we also used
a feature similar to the gradient and histogram combination
feature of [7]. For each horizontal pixel stripe on the kernel
image, we counted the pixels that had a gradient on the red
component (current point - the 10th previous) greater than
a certain value (10, 20, 40) and red component also greater
than a certain value (200, 220, 240, 250). These3 × 4 = 12
additional features resulted in a final feature set of size 49.
Figure 2 shows the mean and standard deviation of features
for all the available data. The gradient histogram features



Fig. 1. A sample of good and insect damaged kernel pictures.

have more variability than the normal histogram features. We
assigned output 0 to the good kernels and 1 to the insect
damaged kernels.

In addition to the histogram features, we tried two other
features: the minimum, maximum and majority over 3x3
rectangles and the mean on the center of the wheat. However,
the results didn’t improve, so we don’t report them here.

III. L EARNING ALGORITHMS

We used two different learning algorithms, the linear model
and the radial basis function (RBF) network [8]. The input
features for all the algorithms werex ∈ R49 and the corre-
sponding outputs werey ∈ {−1, 1}.

In order to get reliable figures on algorithm performance,
we used cross validation. We randomly partitioned all the
available data into a training and a test set. The training set
used 90% of data from each class and the test set used the
remaining 10%. We repeated the partitioning 10 times.

We estimated the model performance using the ROC (Re-
ceiver Operating Characteristics) [9], [10], [11] and the Area
Under the ROC curve (AUC) [12] on the test set. In order
to obtain different False and True Positive rates on the ROC
curve, we varied the threshold of each learning algorithm.

• Linear Model : Let AN×(36+1) contain normalized train-
ing inputs preceded by 1 andbN×1 contain the outputs
yi for all the N training examples. The linear model is
obtained by solving forw37×1 in the equationAw = b.
In order to solve this equation we need to invertAT A.

Fig. 2. The mean and standard deviation of the input features for good and
insect damaged kernels.

SinceA was not full rank,AT A was not invertible. We
used singular value decomposition [13] withε = 0.001.
In order to get different points on the ROC curve, we
varied the threshold for the output from -2 to 2 in steps
of 0.1. If the output for a test case was smaller than
the threshold we classified it as good and otherwise we
classified it as insect damaged.

• Radial Basis Function (RBF) Network: We used the
RBF network described in [8]. We chose the first layer
weights through K-means clustering of the normalized
training data. We computed the basis unit output for
basis (first layer) weightsv and normalized inputx as
e
−α
36 |v−x|, where |.| denotes the absolute norm of the

vector. We computed the output of the RBF network for
an input as the linear combination of the basis unit outputs
appended by 1. We used singular value decomposition to



Algorithm AUC
Linear 0.90± 0.02
RBF 0.77± 0.05

RBF and Linear Committee 0.93± 0.03

TABLE I

AREA UNDER ROC CURVE (AUC) FOR DIFFERENTLEARNING

ALGORITHMS

compute the output layer weights.
Since the three parameters of the RBF network, number
of basis units, the scaling factorα of the basis unit
function andε of the singular value decomposition made a
difference in the performance, we chose the parameters to
be used for each training set as follows. We first divided
the training set into a new training (90%) and validation
(10%) set and we repeated this division 5 times. For each
parameter combination, we found the mean AUC over
5 different training-validation partitions. We chose the
parameter combination with the maximum mean AUC
to be used for the overall training set.
We used thresholds as in the linear model to get different
ROC curve points.

• Linear Model and RBF Network Committee: We used
a linear combination[14] of the RBF network and the
linear model outputs as the output of the committee and
the same thresholds to get ROC curve points.

IV. RESULTS

For each of the 10 training-test set partitioning of the
available data, we used the training set to train the learning
algorithm. We then used the test set to compute the ROC
(Receiver Operating Characteristics) [9], [10], [11] curve for
each partitioning.

We interpolated the ROC curve for each partitioning and
reported the mean and standard deviation of the True Positive
Rate (sensitivity) for each False Positive Rate (1-specificity)
value for each learning algorithm [10]. The mean and the
standard deviation on the ROC curve gives us a better idea
on the performance of an algorithm. In order to get a reliable
mean, we discarded the ROC curve with the maximum and
minimum AUC and computed the average ROC curve using
the 8 remaining ROC curves. Please see table IV and figure
3.

Because of its simplicity and performance linear model
seems to be the best single algorithm. The RBF and linear
model committee performed the best. In figure 4 we show
the AUC performance of the combined classifier for different
weights given to the linear model. The weight of the RBF
model is always 1.

Although we experimented with different implementations
of the RBF algorithm, such as determining the input weights
one by one according to the training example with the worst
error, using not all the inputs but a portion of them, we could
not improve the performance of the RBF network. We think

Fig. 3. Performance of Different Learning Algorithms.

that the high correlation of the input features may be the
reason and ICA, PCA or another approach, such as [15] may
be helpful.

Fig. 4. Performance of the Combined Classifier as the Weight of the Linear
Model Changes.

V. D ISCUSSION

We used a number of learning algorithms to classify good
and insect damaged wheat kernels and we found out that
thelinear model performed the best. Additional information
about the kernels such as reflectance images or compression
force or conductance measurements [6] could be used to



improve performance of a single classifier. Another approach
is to train different classifiers with each of these features and
then combining them [16].

Since the machines that automatically detect damaged ker-
nels must work very fast, it is important to determine which
few features are the most important to determine the dam-
aged kernels [7]. Approaches such as Independent Component
Analysis (ICA) or Principal Component Analysis (PCA) could
be used to select important features. It is worth noting,
however, that on a 1.33 GHz Power PC G4 running MacOS
X, linear or RBF network models take less than 1 milisecond
to classify a sample. Since feature extraction for the samples
used in this paper was performed manually, this figure does
not include the time required for feature extraction.
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