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Abstract

We show that� with a uniform prior on models having the same

training error� early stopping at some �xed training error above the

training error minimum results in an increase in the expected general�

ization error�

� Introduction

Early stopping of training is one of the methods that aim to prevent over�
training due to too powerful a model class� noisy training examples or a
small training set� We study early stopping at a predetermined training er�
ror level� If there is no prior information� other than the training examples�
all models with the same training error should be equally likely to be chosen
as the early stopping solution� When this is the case� we show that� for
general linear models� early stopping at any training error level above the
training error minimum increases the expected generalization error� More�
over� we also show that the generalization error is an increasing function of
the training error� Our results are nonasymptotic and independent of the
presence or nature of the training data noise� and they hold when instead
of generalization error� test error or o��training�set error � �Wolpert� �		�b�
are used as the performance criterion� For general nonlinear models� around
a small enough neighborhood of a training error minimum� the mean gen�
eralization error again increases� when all models with the same training

�O��training�set error does not assume that the training and test inputs come from
the same distribution�
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error are equally likely� Regularization methods such as weight decay� early
stopping using a validation set� or early stopping of training using a hint
error are equivalent to early stopping at a �xed training error level but with
a nonuniform probability of selection over models with the same training
error� If this nonuniform probability agrees with the target function� early
stopping may help� One should be aware of what nonuniform probability of
selection is implied by the learning procedure�

When they studied early stopping� Wang et� al� �Wang et al�� �		
�
analyzed the average optimal stopping time for general linear models �one
hidden layer neural networks with a linear output and �xed input weights�
and introduced and examined the e�ective size of the learning machine as
training proceeds� Sjoberg and Ljung �Sjoberg and Ljung� �		�� linked early
stopping using a validation set to regularization� and showed that empha�
sizing the validation set too much may result in an unregularized solution�
Amari et� al� �Amari et al�� �		�� determined the best validation set size in
the asymptotic limit and showed that even when this validation set size is
used� early stopping using a validation set hurts for very large training sets�
Dodier �Dodier� �		�� and Baldi and Chauvin �Baldi and Chauvin� �		�� in�
vestigated the behavior of validation error curves for linear problems� and
the linear auto�association problem respectively�

The term no free lunch was introduced in �Wolpert� �		�a�
Wolpert� �		�b�� Wolpert shows that when the prior distribution over the
target functions is uniform� and the o��training�set error is taken to be the
performance criterion� there is no di�erence between learning algorithms�
In other words� if a learning algorithm results in good o��training�set error
for one target function� it results in equally worse o��training�set error for
another target function� Like �Zhu and Rohwer� �		�� and �Goutte� �		��
who put no�free�lunch theorems into the framework of cross validation� our
work puts the no�free�lunch into the framework of early stopping�

Our method of early stopping �choosing a model uniformly among the
models with the same training error� is similar to the Gibbs algorithm
�Wolpert� �		��� Although the uniform probability of selection around
the training error minimum is equivalent to the isotropic distributions of
�Amari et al�� �		��� their work concentrates on very large number of train�
ing examples� Moreover� for general linear models we need the probability
of selection of models to be only symmetric around the training error mini�
mum� and symmetry is a weaker requirement than uniformity�
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We are given a �xed training set f�x�� f��� � � � � �xN � fN �g with inputs
xn � Rd� and outputs fn � R� The model to �t the training data will be
denoted by gv�x�� with adjustable parameters v� We will refer to models by
their adjustable parameters v� unless indicated otherwise� We assume that
the training outputs were generated from the training inputs according to
some unknown and �xed distribution f�xn�� hence fn � f�xn�� For example�
if the outputs were generated by a teacher model with parameters v� and
additive zero mean normal noise� we would have f�xn� � gv��xn��en where
en � N ��� ��e � for �

�
e � ��

We de�ne the quadratic training error ET and the generalization error
E at v as�

ET �v� �
�

N

NX
n��

�gv�xn�� fn�
� E�v� �

D
�gv�x�� f�x���

E
x

Let vT be a local minimum of the training error ET � Let � � � and
E� � ET �vT � � �� Let W� � f�v � ET �vT ��v� � E�g� The set of
models vT �W� form the early stopping set� We de�ne early stopping at
training error E� as choosing a model from the early stopping set according
to a probability distribution on the models in the early stopping set� We
denote the probability of selecting vT ��v as the early stopping solution by
PW�

��v�� This probability is zero if �v ��W�� The mean generalization
error at training error level E� is�

Emean�E�� �

Z
�v�W�

PW�
��v�E�vT ��v�d�v

PW�
is said to be uniform if ��v��v� �W�� PW�

��v� � PW�
��v�� �

that is� if models with the same training error are equally likely to be chosen
as the early stopping solution� �See Figure ��

The rest of the article is organized as follows� In section �� we prove that
early stopping can not decrease the mean generalization error for general lin�
ear models when all models with the same training error are equally likely
to be the target� Section  proves the same result for nonlinear models but
around a training error minimum only� In all these cases� we assume that
there is no prior information about the target that generated the training
data� In section 
 we experimentally verify the early stopping results for
general linear and neural network models� We also compare weight decay�
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Figure �� The models with training error E� � ET �vT � � � form the early
stopping set at training error level E��

early stopping using a validation set and learning with additional prior infor�
mation �hints� �Abu�Mostafa� �		
� to our framework and show that early
stopping can help when certain additional information is available� Finally�
section � summarizes the results�

� Early Stopping for a General Linear Model

In this section we will consider the general linear models� Let �i�x� �
Rd� � R� i � �� � � � � d be �xed transformation �basis� functions and let
��x� � ����x�� ���x�� � � � � �d�x��

T � We de�ne a general linear model as
gw�x� � wT��x� with �xed transformation functions ���� and adjustable
parameters w �see Figure ��� If ���x� � � and �i�x� � xi� � � i � d� � d

we obtain the usual linear model� if �i�x� �
Qd�

j�� x
kj
j � kj � � we obtain a

polynomial model� The output of the general linear model is linear in the
model parameters w and it can be nonlinear in the inputs x� We will denote
a general linear model only by the adjustable parameters w�

Let fN�� � �f�� � � � � fN �
T be the training outputs� Let �x�d����N �

���x��� � � � � ��xN �� denote the training inputs transformed by the �xed trans�

formation functions� De�ne Sx �
�x�

T
x

N
and ���x� �

D
��x���x�T

E
x
� When
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Figure �� General linear model�

�x�
T
x is full rank �� the unique training error minimum is given by the

ordinary least squares solution�

wT � ��x�
T
x �
��
�xf � S��x

�xf

N

The Hessians of training and generalization errors are constant positive
semide�nite� matrices at all w�

HET �w� � �Sx HE�w� � ����x�

Any higher derivatives of E and ET are zero everywhere� Hence� for any
�w� the generalization and training errors of wT 	�w can be written as�

E�wT 	�w� � E�wT �	�wTrE�wT � ��wT���x��w ���

�Hence we restrict ourselves to problems where N � d� �� When the transformation
functions are real valued� for most cases �x�

T
x is likely to be full rank�

�Any matrix of the form AAT is positive semide�nite� because for any w of proper

dimensions� wTAAT
w 	 jjAT

wjj� � 
� hence Sx 	
�x�

T

x

N
is positive semide�nite�

���x� 	
�
��x���x�T

�
x
is also positive semide�nite since

�x�
T

x

N
��N��

�
��x���x�T

�
x
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ET �wT 	�w� � ET �wT � ��wTSx�w ���

The following lemma proves that when all models with the training error
ET �wT � � �� � � � are equally likely to be chosen as the solution� the mean
generalization error at training error level ET �wT � � � can not be smaller
than the generalization error of the training error minimum wT �

Lemma �� When all models with training error E� � ET �wT � � � �
ET �wT � are equally likely to be chosen as the early stopping solution� the
mean generalization error at training error level ET �wT � � � is at least
as much as the generalization error of the training error minimum� More
speci�cally� for any � � �� Emean�E�� � E�wT � � ����� for some ���� � ��

The proof is given in appendix A� See Figure  for an illustration of the
lemma�
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Figure � Early stopping at a training error � above ET �wT � results in
higher generalization error when all models having the same training error
are equally likely to be chosen as the early stopping solution�
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This result does not depend on the noise level� number of training ex�
amples� or the target function versus model complexity� Even if the target
function is a constant and the model is a ���th degree polynomial� lemma
� tells us that we should stop only at the training error minimum�

If the error criterion is the test error on independently and identically
distributed �i�i�d�� or non�i�i�d� inputs f�x�� � � � � �xMg� the lemma still holds�

Because S	x �

�x


T
�x

M
is positive semide�nite�

Furthermore� lemma � holds not only for quadratic loss� but for any
loss function which has a positive semide�nite test error Hessian and small
enough third and higher derivatives at the training error minimum�

The following theorem compares the mean generalization error between
any two training error levels�

Theorem �� When all models with the same training error are equally likely
to be chosen as the early stopping solution� the mean generalization error is
an increasing function of the early stopping training error� In other words�
for � � �� � ��� Emean�E��� � Emean�E����

The proof is given in appendix B�

Therefore� when the model is general linear� the best strategy is to min�
imize the training error as much as possible�

� Early Stopping for a Nonlinear Model

When the model is general linear we are able to prove lemma � without any
assumptions about the location of the generalization error minimum with re�
spect to the training error minimum� Also� our results are valid for all models
with the same training error� regardless of how far they are from the training
error minimum� For the nonlinear model we will assume that the distance
between the training error minimum and the generalization error minimum

is O
�
�
N

�
� which asymptotically is the case �see e�g�� �Amari et al�� �		����

Also we will prove the increase in the mean generalization error only around
the training error minimum�

Let the model gv be a nonlinear �continuous and di�erentiable� model
with adjustable parameters v� Let vT be a minimum of the training error�
and let v� be a minimum of the generalization error�
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Now we assert the counterpart of lemma � for the nonlinear models�

Theorem 	� Let vT � v� � O
�

�
N��	

�
� �v � O

�
�

N��	

�
� � � � and

� � O
�
�
N

�
� Let E� � ET �vT � � � �O

�
�

N��	

�
� When all models with train�

ing error E� are equally likely to be chosen as the early stopping solution�

their mean generalization error is Emean�E�� � E�vT � � ���� � O
�

�
N��	

�
�

for some ���� � ��

The proof is given in appendix C�

� Weight Decay� Early Stopping Using a Valida�

tion Set and Hints

We see from lemma � and theorem � that if all models with a given training
error are chosen with equal probability �density� then no strategy beats the
strategy of choosing the training error minimum� We emphasize that the
only assumption required for the proof of the theorem is that the models
with the same training error be chosen with equal probability �� We make
no assumptions on the input probability distribution� target function� or
presence or nature of the noise� This is a strikingly general statement espe�
cially given the plethora of evidence in favor of methods picking a solution
other than the training error minimum �Reed� �		�� It must therefore be
the case that these algorithms are violating the assumptions of our theorem�
some models with a given training error are chosen with higher probability
than others�

First we establish that the commonly used regularization techniques do
not choose uniformly among models with a given training error� This is
easy to see for weight�decay�type regularizers� Given two weight vectors
with the same training error� the model with the smaller weights is favored�
In this way� models with lower complexity are favored� Early stopping works
in a similar way �Sjoberg and Ljung� �		��� From the data set one picks a
training set and the remaining data points are used as a validation set� Along
the path from the starting point of the training algorithm to the training set
minimum� one picks the weights that obtain a minimim for the validation
set error� The key observation is that the training algorithm usually starts
at small weights� This means that if the validation set minimum happens to


In fact for the proof we actually only need symmetry�
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have smaller weights than the training set minimum �roughly half the time
�Amari et al�� �		���� then the �nal solution will have smaller weights� If the
validation set minimum happens to have larger weights than the training
minimum �roughly half the time� then the �nal solution will be the training
minimum because of the direction of approach� Averaging over possible
training sets� the training set minimum will average to the minimum of the
entire training set� therefore we see that on average the solution will have
smaller weights than the entire training set solution� much like a weight
decay type regularizer� Thus once again we see that the algorithm favors
smaller weights �less complex functions��� Thus we see that the assumption
of the theorem is being violated� What remains is to see that it is being
violated in a way that favors the right models� In real data where noise is
usually present� the data represents a function that is more complex than
the target function� Thu�s given two models with the same training error�
the less complex one should be favored�

We have given an intuitive explanation as to why regularizing algorithms
tend to work� and how they are violating the no�free�lunch theorem we
have proved� We would like to end on a more general note on the use
of prior information such as hints and invariances that are known ahead
of time about the target function� By starting at small weights or using
regularization� we are enforcing a prior about the learning problem� that
noise is present and so the data alone represents too complex a function� In
general one should incorporate all the prior information into the objective
function and then minimize that objective function� This is usually done
in a Bayesian framework� If one has no prior information� then all models
yielding the same training error should be equally likely and we are in the
world of our no�free�lunch theorem� Thus� we see that in order to get better
performance than the training error minimum� it is necessary to incorporate
some prior information into the learning process� It is in this sense that our
theorem is a no�free�lunch theorem�

��� Experiments

We experimented with linear and nonlinear models to verify our results�

	If one in addition averages over possible starting points for the training algorithm as
well� then this would remove the asymetry and the theorem would apply� Thus we see
that the key to these early stopping algorithms is in fact the use of small weights for the
initial starting point�

	




���� Linear Model

We computed the minimum training error �least squares� solution wT � then
we computed the average generalization error of solutions w with training
error ET �wT ���� For comparison� we also computed the generalization error
of the weight decay solution with training error ET �wT � � �� In Figure 


we show the behavior of the mean generalization error as the training error
increases� When all models with the same training error are chosen with the
same probability� in agreement with lemma �� the mean generalization error
increases as the training error increases� On the other hand� the weight decay
solution has smaller generalization error for a small enough weight decay
parameter� Note that choosing the weight decay solution with probability
� corresponds to a nonuniform �delta function� probability distribution on
models with the same training error� therefore lemma � does not apply�
Note also that� for this experiment� both the target and the model are linear
and the training points have zero mean normal noise� therefore� the weight
decay provably results in better generalization error when the weight decay
parameter is small enough �Bishop� �		���


���	 Nonlinear Model

We experimented with a neural network model� and a noisy and even tar�
get function� also generated by a �teacher� neural network model� We
�rst found a training error minimum using the gradient descent with
adaptive learning rate� Then we chose random weights �v� such that
ET �vT ��v� 
 ET �vT � � �� In Figure �� we show the mean test error

�For this experiment� both the target and the model were linear� Input dimensionality
was d 	 � plus constant bias �� Training inputs were chosen from a zero mean unit
normal� There were N 	 �
 training input�outputs� The target �teacher� model was
also linear with weights chosen from zero mean � variance normal� Zero mean normal
noise was added to the training outputs� Noise variance was determined according to 
��
signal�to�noise ratio� The mean generalization�test error for the uniform P was computed
on 

 di�erent models with the same training error� The generalization�test error was
computed as the squared distance between the target and the model�

�Since the gradient at the minimum vT is very small but not exactly zero� we scaled�v
as k�v where k is the best possible solution for k�vTrET �vT ��k

� �
�
�v

THET �vT ��v 	

�� Hence k 	
�b�

p
b�
a�

�a
where a 	 �

�
�v

THET �vT ��v and b 	�vTrET �vT ��
�The training outputs were generated by �teacher� neural network whose weights were

drawn from unit normal� First a neural network with  hidden units was generated�
Then the function was made even by adding �ve more hidden units with exactly the

��
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Figure 
� The mean generalization�test error versus training error of a linear
model for a given target and training set� The mean generalization error
increases as the training error increases when all models with the same train�
ing error are given equal probability of selection� When the weight decay
parameter is small enough� choosing the weight decay solution with proba�
bility � and all other models with the same training error with probability
� improves the generalization error�
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versus the training error for a speci�c target� training set and model gvT �
When the mean test error for a certain training error level is computed by
giving each model with the same training error equal probability� the mean
test error increases� On the other hand� when the models with smaller even�
ness hint error E��vT ��v� are given more weight� the mean test error
seems to decrease for sometime and then increase� In other words� early
stopping� choosing models with smaller hint errors with higher probability
can decrease the mean test error�

Note that� as shown in Figure �� the decrease in the mean test error
using the hint is dependent on not only the number of training examples N �
but also the signal�to�noise ratio� For the same N � but now for SNR � ���
selecting the models according to the evenness hint error� in the same way
we did for the previous experiment that had SNR � ����� does not decrease
the mean test error� It is possible that the probability of selection of a model
should depend not only on the hint error E�� but also the level of training
error and the signal�to�noise ratio�

� Conclusions

We analyzed early stopping at a certain training error minimum� and showed
that one should minimize the training error as much as possible when all the
information available about the target is the training set� We also demon�
strated that when additional information is available� early stopping can
help�

same connections� except negative of the input weights of the �rst �ve hidden units� The
training and test inputs were drawn from a zero mean and variance �
 normal� The
training outputs were obtained by adding zero mean noise to the teacher outputs on the
training inputs� The noise variance was determined according to the signal�to�noise ratio�
The test outputs were not noisy� There were N 	 �
 training and M 	 
 test examples�
The student �model� neural network had �
 hidden units� and its weights were drawn
from a zero mean 
�

� variance normal� The training method was gradient descent�
The learning rate was initially 
�


�� during training� it was multiplied by ��� when the
training error decreased and halved otherwise� Training continued for �


 passes and the
model with the smallest training error was taken to be gvT � When computing the mean
test error using the evenness hint �Abu�Mostafa� ������ we weighed the model gvT�vi

according to� exp�E��vT�v
i�P

����

i��
exp�E��vT�v

i�
for i 	 �� � � � � �


�

��
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Figure �� The mean test error versus training error of a nonlinear model for
a given even target and training set� The mean test error increases as the
training error increases when all models with the same training error are
given equal probability of selection� Choosing the models with the smaller
evenness error with higher probability reduces the mean test error�
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Figure �� When the signal�to�noise ratio is high and the target is even� even
if the models with the same training error are weighed according to their hint
error� the mean test error around the training error minimum may increase�
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A Proof of Lemma ��

Let the early stopping training error level be E� � ET �wT � � � for some
� � �� Then� from equation �� the early stopping set consists of wT �W� �
wT � f�w ��wTSx�w � �g� The mean generalization error is�

Emean�E�� �

Z
�w�W�

PW�
��w�E�wT ��w�d�w

For any�w �W�� hence satisfying�w
TSx�w � �� there exists a ��w �

W�� therefore we can rewrite the mean generalization error as�

Emean�E�� � ���

Z
�w�W�

�PW�
��w�E�wT ��w�

�PW�
���w�E�wT ��w�� d�w

Now� since PW�
is uniform� it is also symmetric� i�e� PW�

��w� �
PW�

���w�� For the proof of this lemma symmetry is the only restric�
tion we need on PW�

� Using symmetry of PW�
� equation �� and the fact

that
R

�w�W�

PW�
��w�d�w � ��

Emean�E�� � E�wT � �

Z
�w�W�

PW�
��w��wT���x��wd�w

� E�wT � � ����

Since ���x� �
D
��x���x�T

E
x
is positive semide�nite and PW�

��w� � ��

���� �

Z
�w�W�

PW�
��w��wT���x��wd�w � � ��

�

B Proof of Theorem ��

By lemma �� Emean�E��� � E�wT ������� and Emean�E��� � E�wT �������
for ������ ����� 	 �� Let � � �� � ��� We need to prove ����� � ������
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Let V ��� �
R

�w�W�

�wT���x��wd�w� and let �
P�

be the surface area

of the d�dimensional ellipsoid�wTSx�w � �� Since PW�
is uniform� from

equation �

�����

�����
�

P��
P��

V ����

V ����

De�ne k� � ��
��

	 �� Let W�� � f�w � �wTSx�w � ��g� Then W�� �
fk�w � �w � W��g� By means of change of variables �u � k�w in

V ���� we have
V ����
V ����

� kd���

We can de�ne the surface area as the derivative of the volume�

�

P�
� lim

l��

R
�w

T
Sx�w���l

d�w �
R

�w
T
Sx�w��

d�w

l

� lim
l��

�
��l
�

�h�
� � �

l

Z

�w
T
Sx�w��

d�w

�
h� �

��

Z

�w
T
Sx�w��

d�w

Hence �
P��

� h��
���

R
�w

T
Sx�w���

d�w� By means of change of variables�u �

�w

k
we have �

P��
� kd�� �

P��
� Therefore�

P��
P��

� k�d���

Hence� �����
�����

� k�d��kd�� � k� 	 �� �

C Proof of Theorem ��

Let rE�vT ��rET �vT ��HE�vT ��HET �vT � denote the gradient and Hes�
sians of the generalization error and the training error at the training error
minimum vT �

Similar to equations � and �� the training and generalization errors at
vT ��v are�

E�vT 	�v��E�vT �	�vTrE�vT �

�
�

�
�vTHE�vT ��v �O

�
�

N���

�
�
�

��



ET �vT 	�v� � ET �vT � �
�

�
�vTHET �vT ��v �O

�
�

N���

�
���

Since vT � v� �O
�

�
N��	

�
�

HE �vT � � HE

�
v� �O

�
�

N���

��
� HE �v�� �O

�
�

N���

�

Using the fact that�v � O
�

�
N��	

�
� and equation 
� we can write the average

generalization error among vT ��v and vT ��v as�

E�vT ��v� �E�vT ��v�

�
� E�vT � �

�

�
�vTHE�v���v �O

�
�

N���

�

De�ne W� � f�v � ET �vT ��v� � ET �vT � � � �O
�

�
N��	

�
g� �Hence

� � O
�
�
N

�
�� For each �v �W�� there is a ��v �W�� As we did for the

proof of lemma �� using the uniform probability of selection PW�
� we can

compute the mean generalization error as�

Emean�E�� �

Z
�v�W�

PW�
��v�E�vT ��v�d�v

� ���

Z
�v�W�

�PW�
��v� E�vT ��v�

�PW�
���v�E�vT ��v�� d�v

� E�vT � � ���

Z
�v�W�

PW�
��v��vTHE�v���vd�v

�O

�
�

N���

�

� E�vT � � ���� �O

�
�

N���

�

Since v� is the generalization error minimum� HE�v�� is positive semide��
nite� Hence� ���� � ���

R
�v�W�

PW�
��v��vTHE�v���vd�v � �� �
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