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Introduction 

Training with early stopping is the following process. 
Partition the in-sample data into training and validation 
sets. Begin with a random classifier 91. Use an iterative 
method to decrease the error rate on the training data. 
Record the classifier at  each iteration, producing a series 
of snapshots 91,. . . , gM. Evaluate the error rate of each 
snapshot over the validation data. Deliver a minimum 
validation error classifier, g*, as the result of training. 

The purpose of this paper is to develop a good proba- 
bilistic upper bound on the error rate of g* over out-of- 
sample (test) data. First, we use a validation-oriented 
version of VC analysis [S,  71 to develop a bound. Because 
of the nature of VC analysis, this initial bound is based 
on worst-case assumptions about the rates of agreement 
among snapshots. In practice, though, successive snap- 
shots are similar classifiers. We exploit this feature to 
develop a new bound. Then we test the bound on credit 
card data. 

VC-Style Bound 

Framework 
Our machine learning framework has the following struc- 
ture. There is an unknown boolean-valued target func- 
tion and an unknown distribution over its input space. 
For example, the input distribution could be typical data 
about credit card applicants, and the target function 
could be 1 if the applicant defaults within 5 years of 
being issued a credit card and 0 otherwise. 

We have a sequence of snapshot classifiers 91, . . . , gM. 
We have d validation examples which were not used to 
train the classifiers. We also have d' test inputs (but not 
the corresponding outputs). The validation and test in- 
puts were drawn independently at  random according to 
the underlying input distribution. The validation out- 
puts were determined by the target function. We desire 
a bound on the error rate over the test inputs of a classi- 
fier g* E {gl, . . . , gM} that has minimum error rate over 
the validation data. (The error rate of a classifier over 
a data set is the rate of disagreement over the inputs 
between the classifier and the target function.) 
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Single-Classifier Bound 
The first step to develop a VC-style bound for the test 
error of g* is to develop a bound for an arbitrary snap- 
shot gm chosen without reference to validation error. Let 
um be the validation error of gm, and let & be the test 
error. Let n = d + d', the number of inputs in the Val- 
idation and test data combined. The probabilities in 
our error bounds are over partitions of the n inputs into 
d validation examples and d' test examples. Since the 
inputs are drawn i.i.d., each partition is equally likely. 

Let w be the number of the n inputs for which classifier 
gm produces the incorrect output. The probability that 
the validation error is 5 is 

If the validation error is 5 ,  then the test error is 9. 
so 

(2) 
Bound by maximizing over w. 

We refer to  the bound as B(c). 

Initial Test Error Bound for g* 
The single-classifier bound 

Pr{vk 2 vm + e }  5 B(E) (4) 
is based on probabilities over random partitions of the n 
inputs into validation and test sets. Classifier g* is cho- 
sen according to validation error. To compute validation 
error, we implicitly use information about which inputs 
are in the validation set. So g* is chosen by reference 
to the partition at hand, and hence the single-classifier 
bound is not valid for g*. 

However, the snapshot sequence g1 , . . . , QM is chosen 
without reference to the partition since training refer- 
ences neither validation nor test data. We develop a 
uniform bound over the 91, . . . , gM. The uniform bound 
includes a bound on g* since g* E {si, . . . , gM}. 

To obtain a uniform bound, consider the probability 
of failure for at least one single-classifier bound. 

>_ VM + E }  ( 5 )  Pr{vi 2 y + E or . . . or 
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to the partition. So it is valid to use the central classifier 
that minimizes ,!? + 6 as c* in the bound (14). However, 

Bound the probability of the union event by the sum of 
event probabilities. 

5 Pr{v: 1 v1 + E }  + . . . + Pr{vh 2 VM + E }  (6 )  

Use the single-classifier bound for each probability. 

I M B ( f )  (7) 

Subtract M B ( E )  from one to bound the probability of 
the complement of (5). 

Pr{vi < v1 + E  and . . . and vb < v~ + E }  2 1 - M B ( E )  

This uniform bound applies to g* since it is a snapshot. 
(8) 

(9) Pr{v: < v* + E }  2 1 - M B ( E )  

where U: and U* are the test and validation error rates 

Central Classifier Bound 

of g*. 

Choose a set of “central” classifiers c1,. . . , cs with- 
out reference to the partition of inputs into valida- 
tion and test sets. For example, select central clas- 
sifiers by sampling the snapshots at  intervals of 100: 

Let c* be a central classifier which may be chosen with 
reference to the partition. Let v; and U+ be the test and 
validation error rates of c*. Since the central classifiers 
are chosen without reference to the partition, we can use 
a uniform bound over them as a bound for c* in the same 
manner as we used a uniform bound over the snapshots 
as a bound for g* in (9). 

c1 = g100,. * .  7c10 = g1000. 

Pr{v; < v+ + E }  2 1 - SB(E)  (10) 

As before, let U: and v* be the test and validation error 
rates of g*. Add U: - v i  to both sides of the inequality 
in the event. 

Pr{vi+(v:-vylt) < v++(v:-v;)+~} 2 I-SB(E) (11) 

This implies 

Pr{v: < v+ + (v: - vk) + E }  2 1 - SB(E)  (12) 

Note that the difference in error rates between any two 
classifiers can be no greater than the rate of disagree- 
ment. Let 6 be the rate of disagreement between g* and 
c* over the test inputs. Since 6 2 U: - vi, 

Pr{v: < v+ + 6 + E} 2 1 - SB(E)  (13) 

Let ,!? = v* - U+. Rewrite v+ as v, - p. 

Pr{v: < v, + ,!? + S + E }  2 1 - SB(E)  (14) 

(15) 
T m s  ,4 + 6 5 maxmin 

m s min(d,d’) 

Refer to the bound as y. 
We can choose bounding methods and select central 

classifiers using any approximation of p + 6 that neither 
references validation and test outputs nor differentiates 
between validation and test inputs. We can approximate 
/3 + S by altering the bound (15). The average rate of 
disagreement in each data set is y, so substitute 
for miigd,). We still have the rate of disagreement over 
validation inputs bounding the difference in validation 
errors /3. Scale the disagreement to reflect any a priori 
beliefs about the relationship between disagreements and 
error rate differences. For example, to express a belief 
that, on average, the validation error difference is half 
the rate of disagreement, replace % by k ( l d  212 + L).  n n 
Finally, instead of maximizing over classifiers gm, take 
an average, weighted according to any a priori beliefs 
about which classifier is g*. For example, if the initial 
classifiers have high training error, then give them less 
weight. 

, ’ 

Tests 

This section outlines the results of tests on a set of 
credit card data. Each example corresponds to a credit 
card user. There are six inputs that correspond to user 
traits. The traits are unknown because the data provider 
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has chosen to keep them secret. There is a single out- 
put that indicates whether or not the credit card user 
defaulted. The data were obtained from a machine- 
learning database site at  the University of California at 
Irvine. The discrete-valued traits were removed, leav- 
ing the six continous-valued traits. Of the 690 examples 
in the original database, 24 examples had at  least one 
trait missing. These examples were removed, leaving 
666 examples. The data were cleaned by Joseph Sill. 
For further information, see [5]. 

There were 10 tests. In each test, the 666 examples 
were randomly partitioned into 444 training examples, 
d = 111 validation examples, and d' = 111 test exam- 
ples. In each test, a classifier was trained, producing 
M = 1000 snapshots. The classifiers are artificial neu- 
ral networks with six input units, six hidden units, and 
one output unit. The hidden and output units have tanh 
activation functions. The initial weights were selected in- 
dependently and uniformly at  random from [-0.1,0.1]. 
The networks were trained by gradient descent on mean 
squared error over training examples, using sequential 
mode weight updates with random order of example pre- 
sentation in each epoch. After each epoch, a snapshot 
was recorded. 

In each test, eight sets of central classifiers were ex- 
tracted. The first set contains all snapshots. Hence, the 
error bounds based on the first set of central classifiers 
are the traditional error bounds. The other sets of cen- 
tral classifiers were drawn from the snapshots at  regular 
intervals of 10, 20, 50, 100, 200, 500, and 1000 classifiers. 
For example, the set drawn at intervals of 10 contains 
S = 100 central classifiers, snapshots glo, 9 2 0 , .  . . , g1000. 

In each test, the validation data was used to determine 
g* ,  the snapshot with minimum validation error, and v,, 
its validation error. For each set of central classifiers, 
the validation data and the test inputs were used to de- 
termine c* ,  the best central classifier, v+, its validation 
error, and 6, the rate of disagreement between g* and c* 
over the test inputs. This information was used to derive 
test error bounds for g* using formula (14). 

Table 1 shows the averages over the 10 tests of the 
validation error of g * ,  the validation error of c*, the rate 
of disagreement 6 between c* and g* over the test in- 
puts, and the difference P between the validation errors 
of c* and g*. In the top line, each snapshot is a central 
classifier, so c* is g*. As the number of central classi- 
fiers S decreases, the validation error of the best central 
classifier increases and its rate of disagreement with the 
classifier chosen by early stopping also increases. 

Table 2 shows the average upper bound on the test 
error of g* that is achieved with 90% confidence when a 
fixed number S of central classifiers are used for all tests. 

S l v * l v + l S l  P 
1000 I 0.198 1 0.198 I 0.000 I 0.000 
100 
50 
20 
10 
5 
2 
1 

0.198 
0.198 
0.198 
0.198 
0.198 
0.198 
0.198 

0.205 
0.205 
0.207 
0.212 
0.221 
0.222 
0.234 

0.000 
0.006 
0.012 
0.014 
0.033 
0.072 
0.094 

0.006 
0.006 
0.009 
0.014 
0.023 
0.023 
0.036 

Table 1: For S central classifiers, validation error v, of 
g * ,  validation error v+ of c*,  test set disagreement rate 
6 between c* and g * ,  and validation error difference P 
between c* and g*. (Average over 10 tests.) 

0.219 
0.225 
0.254 
0.294 
0.328 

cmin(S) avg. bound GJGG 
0.208 0.413 
0.199 0.410 
0.181 0.400 
0.163 0.388 
0.145 0.399 
0.118 0.412 
0.091 0.419 

Table 2: For S central classifiers, average upper bound 
on test error of g* with 90% confidence. (The value 
cmin(S) is the minimum E such that SI?(€) 5 0.10.) 

To derive the bound, recall formula (14). 

Let cmin(S) be the minimum 6 such that SB(6) 5 0.10. 
The best upper bound with failure probability no more 
than 10% is v++S+emin(S). At first, the bound improves 
as the number of central classifiers is decreased. The 
decrease in emin(S) more than offsets the increase in v+ + 
S as fewer central classifiers are used. Eventually, there 
are too few central classifiers to attain a good match 
between some central classifier and the classifier chosen 
by early stopping. After this, the best bound increases 
as the number of central classifiers is decreased. 

Tables 3 and 4 show the results of tests to select the 
number of central classifiers using estimates of P + S, 
as discussed in the previous section. The bound 7, as 
defined in inequality (15), was computed for each test. 
This bound proved too loose to be useful because the 
central classifiers have high rates of disagreement with 
the initial snapshots in the training sequences. These 
rates determine the bound since it maximizes over snap- 
shots. However, the initial snapshots are almost never 
chosen by early stopping. 

An alternative estimator, 7#, was computed by ignor- 
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- - 
S 

1000 
100 
50 
20 
10 
5 
2 
1 

- 

- - 

P + S  
0.000 
0.006 
0.012 
0.021 
0.028 
0.056 
0.095 
0.130 

Table 3: For S central classifiers, the actual value of p+S 
and the estimates ys and ya. (Average over 10 tests.) 

ing the first 10 snapshots. Hence, 

Tms - max min - m>10 min(d,d‘) 

where rmS is the number of validation and test inputs for 
which gm and c, disagree. Another estimator, ya, was 
computed by averaging disagreement rates over snap- 
shots (instead of maximizing). 

Tms ya = Emmin 
s min(d,d’) 

Table 3 compares the average of p + 6 to the average 
of ys and ya .  On average, ya is more accurate than ys, 
ya underestimates 

Table 4 compares the bounds derived by choosing the 
number of central classifiers in four different ways. (The 
choice is over S E { 1,2,5,10,20,50,100, lOOO}.) 

+ 6, and ys overestimates p + 6. 

1. Set S = 1000. This gives the bound without central 
classifiers: U, + emin( 1000). 

2. Choose S to minimize U, + emin(S) + ys, i.e. use ys 
to estimate /3 + 6. 

3. Choose S to minimize U, + Emin(S) f ya ,  i.e. use yQ 
to estimate j3 + 6. 

4. Choose S to minimize U, + Emin(S) + j3 + 6. In 
practice, it is not valid to  choose S this way, since 
computing j3 + S requires knowledge of the partition 
of inputs into validation and test sets. (See the pre- 
vious section.) This is the “ideal” bound that would 
be achieved by a perfect estimator of p + S. 

Table 4 displays the average bound for each method 
and the standard deviation of the average bound as an 
estimate of the mean bound over all partitions of the 
data set into training, validation, and test sets, i.e. over 
all possible tests. This statistic shows that the aver- 
age bounds obtained through selecting central classifiers 
with our estimates are statistically significantly less than 
the bounds obtained without central classifiers. 

0.015 
0.016 

Table 4: Performance of four bounding methods. Statis- 
tics are over 10 tests. 

~ Discussion I 

We have developed and experimented with a new test 
error bound for the classifier chosen by early stopping. 
Further results are available in a technical report [l]. 
The report introduces alternative types of central clas- 
sifiers, analyzes the central classifier bound mathemat- 
ically, and outlines bound procedures for the case in 
which test inputs are unknown. 

Another report [3] develops similar results in the full 
VC framework. For more advanced applications of 
bounding by inference, see [2]. Finally, for improved 
uniform bounds over the central classifiers, see [4]. 
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